31. Experimental characterization of the energetics of quantum logic gates,

V. Cimini, S. Gherardini, M. Barbieri, I. Gianani, M. Sbroscia, L. Buffoni, M. Paternostro, and F. Caruso

npj Quantum Information 6, 96 (2020)

doi: 10.1038/s41534-020-00325-71

30. Efficient simulatability of continuous-variable circuits with large Wigner negativity,

L. García-Álvarez, C. Calcluth, A. Ferraro, and G. Ferrini

Phys. Rev. Research 2, 043322 (2020)

doi: 10.1103/PhysRevResearch.2.043322

29. Entropy production in continuously measured Gaussian quantum systems,

A. Belenchia, L. Mancino, G. T. Landi, and M. Paternostro

npj Quantum Information 6, 97 (2020)

doi: 10.1038/s41534-020-00334-6

28. Finite-component dynamical quantum phase transitions,

R. Puebla,

Phys. Rev. B 102, 220302(R) (2020)

doi: 10.1103/PhysRevB.102.220302

27. Macroscopic quantumness of optically conditioned mechanical systems,

H. McAleese, and M. Paternostro

New J. Phys. 22, 093075 (2020)

doi: 10.1088/1367-2630/abb689

26. Quantum Work Statistics with Initial Coherence,

M. G. Diaz, G. Guarnieri, and M. Paternostro

Entropy 22, 1223 (2020)

doi: 10.3390/e22111223

25. Universal Gate Set for Continuous-Variable Quantum Computation with Microwave Circuits,

T. Hillmann, F. Quijandría, G. Johansson, A. Ferraro, S. Gasparinetti, and G. Ferrini

Phys. Rev. Lett. 125, 160501 (2020)

doi: 10.1103/PhysRevLett.125.160501

24. Assessing the role of initial correlations in the entropy production rate for nonequilibrium harmonic dynamics,

G. Zicari, M. Brunelli, and M. Paternostro

Phys. Rev. Research 2, 043006 (2020)

doi: 10.1103/PhysRevResearch.2.043006

23. Nonequilibrium readiness and precision of Gaussian quantum thermometers,

L. Mancino, M. G. Genoni, M. Barbieri, and M. Paternostro

Phys. Rev. Research 2, 033498 (2020)

doi: 10.1103/PhysRevResearch.2.033498

22. Quantum Temporal Superposition: The Case of Quantum Field Theory,

L. J. Henderson, A. Belenchia, E. Castro-Ruiz, C. Budroni, M. Zych, Č. Brukner, and R. B. Mann

Phys. Rev. Lett. 125, 131602 (2020)

doi: 10.1103/PhysRevLett.125.131602

21. Ultrafast critical ground state preparation via bang–bang protocols,

L. Innocenti, G. De Chiara, M. Paternostro, and R. Puebla

New J. Phys. 22, 093050 (2020)

doi: 10.1088/1367-2630/abb1df

20. Implications of non-Markovian dynamics on information-driven engine,

O. Abah, and M. Paternostro

J. Phys. Commun. 4, 085016 (2020)

doi: 10.1088/2399-6528/abaf99

19. Quantum machines powered by correlated baths,

G. De Chiara, and M. Antezza

Phys. Rev. Research 2, 033315 (2020)

doi: 10.1103/PhysRevResearch.2.033315

18. Experimental Assessment of Entropy Production in a Continuously Measured Mechanical Resonator,

M. Rossi, L. Mancino, G. T. Landi, M. Paternostro, A. Schliesser, and A. Belenchia

Phys. Rev. Lett. 125, 080601 (2020) (Editors’ Suggestion)

doi: 10.1103/PhysRevLett.125.080601

17. Kibble-Zurek scaling in quantum speed limits for shortcuts to adiabaticity,

R. Puebla, S. Deffner, and S. Campbell

Phys. Rev. Research 2, 032020(R) (2020)

doi: 10.1103/PhysRevResearch.2.032020

16. Supervised learning of time-independent Hamiltonians for gate design,

L. Innocenti, L. Banchi, A. Ferraro, S. Bose, and M. Paternostro

New J. Phys. 22, 065001 (2020)

doi: 10.1088/1367-2630/ab8aaf

15. Universal Anti-Kibble-Zurek Scaling in Fully Connected Systems,

R. Puebla, A. Smirne, S. F. Huelga, and M. B. Plenio

Phys. Rev. Lett. 124, 230602 (2020)

doi: 10.1103/PhysRevLett.124.230602

14. Measurement-based cooling of a nonlinear mechanical resonator,

R. Puebla, O. Abah, and M. Paternostro

Phys. Rev. B 101, 245410 (2020)

doi: 10.1103/PhysRevB.101.245410

13. Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems​​,

E. Castro-Ruiz, F. Giacomini, A. Belenchia, and Č. Brukner

Nat. Commun. 11, 2672 (2020)

doi: 10.1038/s41467-020-16013-1

12. Quantum State Engineering by Shortcuts to Adiabaticity in Interacting Spin-Boson Systems​,

O. Abah, R. Puebla, and M. Paternostro

Phys. Rev. Lett. 124, 180401 (2020)

doi: 10.1103/PhysRevLett.124.180401

11. Shortcut-to-adiabaticity quantum Otto refrigerator,

O. Abah, M. Paternostro, and E. Lutz

Phys. Rev. Research 2, 023120 (2020)

doi: 10.1103/PhysRevResearch.2.023120

10. ​Entanglement classification via neural network quantum states,

C. Harney, S. Pirandola, A. Ferraro, and M. Paternostro

New J. Phys. 22, 045001 (2020)

doi: 10.1088/1367-2630/ab783d

9. Machine Learning-Based Classification of Vector Vortex Beams,

T. Giordani, A. Suprano, E. Polino, F. Acanfora, L. Innocenti, A. Ferraro, M. Paternostro, N. Spagnolo, and F. Sciarrino

Phys. Rev. Lett. 124, 160401 (2020)

doi: 10.1103/PhysRevLett.124.160401

8. AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space,

Y. Abou El-Neaj et al.

EPJ Quantum Technol. 7, 6 (2020)

doi: 10.1140/epjqt/s40507-020-0080-0

7. Non-resonant interactions and multipartite entanglement in a system of coupled cavities,

​F. Badshah, G.-Q. Ge, M. Paternostro, and S. Qamar

J. Opt. Soc. Am. B 37, 949 (2020)

doi: 10.1364/JOSAB.381215

6. Anti-Zeno-based dynamical control of the unfolding of quantum Darwinism, 

​S. Lorenzo, M. Paternostro, and G. M. Palma

Phys. Rev. Research 2, 013164(2020)

doi: 10.1103/PhysRevResearch.2.013164

5. Observable quantum entanglement due to gravity, 

T. Krisnanda, G. Y. Tham, M. Paternostro, and T. Paterek

npj Quantum Information 6, 12 (2020)

doi: 10.1038/s41534-020-0243-y

4. A macrorealistic test in hybrid quantum optomechanics,

M. M. Marchese, H. McAleese, A. Bassi, and M. Paternostro

J. Phys. B: At. Mol. Opt. Phys. 53, 075401 (2020)

doi: 10.1088/1361-6455/ab6d18

3. Programmable linear quantum networks with a multimode fibre,

S. Leedumrongwatthanakun, L. Innocenti, H. Defienne, T. Juffmann, A. Ferraro, M. Paternostro, and S. Gigan

Nat. Photonics 14, 139 (2020)

doi: 10.1038/s41566-019-0553-9

2. Quasistatic and quantum-adiabatic Otto engine for a two-dimensional material: The case of a graphene quantum dot,

F. J. Peña, D. Zambrano, O. Negrete, G. De Chiara, P. A. Orellana, and P. Vargas

Phys. Rev. E 101, 012116 (2020)

doi: 10.1103/PhysRevE.101.012116

1. Three-qubit refrigerator with two-body interactions,

A. Hewgill, J. O. González, J. P. Palao, D. Alonso, A. Ferraro, and G. De Chiara

Phys. Rev. E 101, 012109 (2020) 

doi: 10.1103/PhysRevE.101.012109