Wasp: Efficient Asynchronous Single-Source Shortest Path on Multicore Systems via Work Stealing – SC’25

We are happy to announce that Marco’s paper was accepted as Supercomputing 2025, taking place the 16-21 November in St. Louis. Marco will present its research paper on Thursday 20th at 3:30pm in the “Algorithms: Matching System Capabilities” session.

Abstract

The Single-Source Shortest Path (SSSP) problem is a fundamental graph problem with an extensive set of real-world applications. State-of-the-art parallel algorithms for SSSP, such as the ∆-stepping algorithm, create parallelism through priority coarsening. Priority coarsening results in redundant computations that diminish the benefits of parallelization and limit parallel scalability.

This paper introduces Wasp, a novel SSSP algorithm that reduces parallelism-induced redundant work by utilizing asynchrony and an efficient priority-aware work stealing scheme. Contrary to previous work, Wasp introduces redundant computations only when threads have no high-priority work locally available to execute. This is achieved by a novel priority-aware work stealing mechanism that controls the inefficiencies of indiscriminate priority coarsening.

Experimental evaluation shows competitive or better performance compared to GAP, GBBS, MultiQueues, Galois, ∆*-stepping, and ρ-stepping on 13 diverse graphs with geometric mean speedups of 2.2x on AMD Zen 3 and 2.1x on Intel Sapphire Rapids using 128 threads.

Source Code

The source code is available at: https://github.com/DIPSA-QUB/wasp
Paper available at: https://dl.acm.org/doi/10.1145/3712285.3759872

Best Poster Award at IPDPS 2025

We’re excited to share that Marco has been awarded the Best Poster Award at the IPDPS 2025 PhD Forum! Marco’s winning poster, titled “Towards Efficient Asynchronous Single-Source Shortest Path”, presents Wasp, a novel algorithm that tackles the fundamental Single-Source Shortest Path problem. His approach addresses a key challenge in parallel graph algorithms by introducing on-demand priority relaxation through a priority-based work-stealing mechanism.

Congratulations, Marco, on this well-deserved recognition! We’re proud to have you as part of our research team and look forward to seeing your continued contributions to the field.