https://arxiv.org/abs/1806.06576
Graph partitioning drives graph processing in distributed, disk-based and NUMA-aware systems. A commonly used partitioning goal is to balance the number of edges per partition in conjunction with minimizing the edge or vertex cut. While this type of partitioning is computationally expensive, we observe that such topology-driven partitioning nonetheless results in computational load imbalance. We propose Vertex- and Edge-Balanced Ordering (VEBO): balance the number of edges and the number of unique destinations of those edges. VEBO optimally balances edges and vertices for graphs with a power-law degree distribution. Experimental evaluation on three shared-memory graph processing systems (Ligra, Polymer and GraphGrind) shows that VEBO achieves excellent load balance and improves performance by 1.09x over Ligra, 1.41x over Polymer and 1.65x over GraphGrind, compared to their respective partitioning algorithms, averaged across 8 algorithms and 7 graphs.