Introduction
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We consider a qubit collisional model as a ther-
It’s been shown that the
out-of-equilibrium steady state dynamics of the col-
lisional model can be used, for instance, to enhance
precision, surpassing the thermal Fisher information

mometric platform.

1]. Here we construct a framework for analyzing
collisional thermometry using Bayesian inference.
In particular, we explicitly plot an estimator and
compare the results with the Cramér-Rao and the
Van Trees-Schutzenberger bounds.
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Qubit Collisional Model

The system undergoes alternating and piecewise in-
teractions. First through a system-environment inter-
action for time 7¢p:

—= = L(ps) = 7(n +1)DloZ] + ynD[o?],

which implies £(pg) = €™*(pg), and then through
partial-swap interactions with the ancillas:

Usa, = exp { — iTSAg(Ufafn + Ufaf’”)}
This results in a stroboscopic map:

pe = tra{Usa, o E(pe @)}

We consider local measurements on the ancillas. The
measurements are performed in the computational ba-
sis and at the steady state, which is calculated from
the map above.

Bayesian Inference

We can use Bayes theorem to construct posterior dis-
tributions P(T'|X) ~ P(X|T)P(T'), which yield es-
timators. A natural choice of estimator is the posterior
mean:

T(X) = / TP(T|X)dT

The quantity above minimizes the mean-squared error
e(T(X)|T) = [(T — T)*P(X|T)dX and saturates
the CRB asymptotically:.

Bayesian updating

The results below show how the distribution gradua.
We can also explicitly plot the estimator and the MS.
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Additionally, the posterior distribution converges to
a Gaussian, with variance proportional to the Fisher
information calculated for the true temperature:

F (1)  nryr-1)?
P(T|X)%\/n (0)6_ Fo<T2To)7

2T

We can also analyze the problem in terms of a figure
of merit which is independent of the temperature. We
call it the Bayesian error:

(n large).

A

ep(T(X)) = / P(T)dT / (T —T)*P(X|T)dX

Note that the figure of merit above depends only on
the estimator, the prior and the likelihood, and it’s
not conditioned neither on the outcomes nor on a
particular temperature.

Van Trees-Schiitzenberger Inequality

This inequality establishes a bound for the Bayesian

risk defined above:
1

‘CP[F(T)] + Fp’
where Ep[F(T)] = | F(T)P(T)dT is the Fisher

information averaged over the prior.
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The figure above shows (a) the MSE for different
temperatures and (b) the Bayesian risk, with the
Van Trees-Schutzenberger inequality in gray. No-
tice how the Bayesian risk converges to Ep|1/nF (1],
the prior-averaged CRB. This provides an asymptotic
analysis which does not depend on a particular value
of the (unkown) temperature. This fact makes it pos-
sible to devise strategies which are, for instance, suited
to larger temperature intervals.
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