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Introduction

We consider a qubit collisional model as a ther-
mometric platform. It’s been shown that the
out-of-equilibrium steady state dynamics of the col-
lisional model can be used, for instance, to enhance
precision, surpassing the thermal Fisher information
[1]. Here we construct a framework for analyzing
collisional thermometry using Bayesian inference.
In particular, we explicitly plot an estimator and
compare the results with the Cramér-Rao and the
Van Trees-Schützenberger bounds.
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Qubit Collisional Model

The system undergoes alternating and piecewise in-
teractions. First through a system-environment inter-
action for time τSE:

dρS
dt

= L(ρS) = γ(n̄ + 1)D[σS−] + γn̄D[σS+],

which implies E(ρS) = eτSEL(ρS), and then through
partial-swap interactions with the ancillas:

USAn
= exp

{
− iτSAg(σS+σ

An
− + σS−σ

An
+ )

}
This results in a stroboscopic map:

ρnS = trAn
{USAn

◦ E(ρn−1
S ⊗ ρ0

A)}

We consider local measurements on the ancillas. The
measurements are performed in the computational ba-
sis and at the steady state, which is calculated from
the map above.

Bayesian Inference

We can use Bayes theorem to construct posterior dis-
tributions P (T |X) ∼ P (X|T )P (T ), which yield es-
timators. A natural choice of estimator is the posterior
mean:

T̂ (X) =
∫
TP (T |X)dT

The quantity above minimizes the mean-squared error
ε(T̂ (X)|T ) =

∫
(T − T̂ )2P (X|T )dX and saturates

the CRB asymptotically.

Additionally, the posterior distribution converges to
a Gaussian, with variance proportional to the Fisher
information calculated for the true temperature:

P (T |X) ≈
√
nF (T0)

2π
e−

nF0(T−T0)2
2 , (n large).

We can also analyze the problem in terms of a figure
of merit which is independent of the temperature. We
call it the Bayesian error:

εB(T̂ (X)) =
∫
P (T )dT

∫
(T − T̂ )2P (X|T )dX

Note that the figure of merit above depends only on
the estimator, the prior and the likelihood, and it’s
not conditioned neither on the outcomes nor on a
particular temperature.

Van Trees-Schützenberger Inequality

This inequality establishes a bound for the Bayesian
risk defined above:

εB(T̂ (X)) ≥ 1
EP [F (T )] + FP

,

where EP [F (T )] =
∫
F (T )P (T )dT is the Fisher

information averaged over the prior.
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The figure above shows (a) the MSE for different
temperatures and (b) the Bayesian risk, with the
Van Trees-Schützenberger inequality in gray. No-
tice how the Bayesian risk converges to EP [1/nF (T )],
the prior-averaged CRB. This provides an asymptotic
analysis which does not depend on a particular value
of the (unkown) temperature. This fact makes it pos-
sible to devise strategies which are, for instance, suited
to larger temperature intervals.

Bayesian updating

The results below show how the distribution gradually peaks around the true value of the temperature.
We can also explicitly plot the estimator and the MSE as a function of n.
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