Emergence of Constructor-based Irreversibility in Quantum Systems

E. Bernardi¹, L. T. Knoll^{1,2}, F. Piacentini¹, C. Marletto³, V. Vedral³, R. Roma⁴, E. Rebufello¹, A. Avella¹, M. Gramegna¹, I.P. Degiovanni^{1,5}, M. Genovese^{1,5}.

¹Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy. ²DEILAP-UNIDEF, CITEDEF-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli,

Buenos Aires, Argentina.

³Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom and Fondazione ISI, Via Chisola 5, Torino,

Italy.

and Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, and Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542. ⁴Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany. ⁵INFN, sezione di Torino, via P. Giuria 1, 10125 Torino, Italy.

Constructor Theory

 A Constructor is a system able to perform a given task on another system while retaining the ability to do it again.

- We formalise this property defining the Relative Deterioration of a system [Marletto_2022]
- A task is possible if there is a Constructor able to perform it

Emergence of Irreversibility

- Consider a task T that transforms a state ρ_x to a state ρ_y , $T:\rho_x\to\rho_y$
- The transposed task $T\tilde{}$ is the task that transform ρ_y to $\rho_x,\,T\tilde{}:\rho_y\to\rho_x$
- We show that exists a task T that is possible while its transposed T^{\sim} is not possible

The Homogeniser

- The Task considered is the Homogenisation of ρ_x to ρ_y
- The machine performing this transformation is the Quantum Homogeniser, operating through sequential partial swap between ρ_x and N

copies of ρ_y

Quantum Optics Experiment

- We realise the Quantum Homogenisation process by using single-photon qubits at 1550 nm and fiber beam splitters
- The single photon is the system ho_{χ}
- The other 3 photons plays the role of the copies $ho_{
 m v}$
- The partial swap is realised using beam splitters

		$\eta = 0.12 \; \mathrm{rad}$
	1 _F	•••••••••••••••••••••••••••••••••••••••
n		Pure to mixed: Entangled rest
	0.9 E	Pure to mixed: Separable rest
		Pure to mixed: Approx. $S(n) = S(1)^n$
	U.8 F	Pure to mixed: Experimental data
	E -	——Mixed to pure: Entangled rest
	0.7 F	Mixed to pure: Separable rest
\frown		

For the homogenisation of a Pure state to a Mixed state, the

- relative deterioration goes to zero
- For the homogenisation of a Mixed state to a Pure state, the relative deterioration goes to infinity
- For Pure to Mixed the constructor exists. The task is possible.
 For Mixed to Pure the constructor does not exists. The task is not possible
- $-\frac{1}{10}$ In this asymmetry consists the emergence of irreversibility

Marletto_2022] C. Marletto et al., Emergence of Constructor-based Irreversibility in Quantum Systems: Theory and Experiment, (2022) Phys. Rev. Lett. 128, 080401.