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Measurement and feedback is a valuable tool for controlling microscopic systems [1]. In this work,
we derive a quantum Fokker-Planck master equation decsribing the joint system-detector dynamics
under continuous measurement and feedback. For fast measurements, we find a Markovian master

1. Main result

e General setup

Measurement Figure 1. Illustration of a generic measurement
System T e Detector and feedback setup, consisting of an open
D quantum system and a detector with finite
bandwidth ~. The detector is continuously
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( X ) measuring an arbitrary system observable A. The
Bandwidth 7 measurement strength )\ parameterizes
— measurement backaction and measurement
Backsctio uncertainty. Continuous feedback is applied
using the measurement outcome ) to control
the Liouville superoperator £(D) of the system.
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The time traces visualize trajectories for the
‘S(f)l\ D(f)l
system state S(f) and the measurement
record D(t).
Ti?no Ti:me

e Quantum Fokker-Planck master equation

The following master equation describes the joint system-detector time evolution under
continuous measurement and feedback control,

A

O:pt(D) = L(D)pe(D) + AD[A]pr(D) (1)

~19p A(D)pi(D) + -9 pi(D)

» p:(D) joint system-detector density operator

> Py = / dDps(D) system state for unknown outcome D
» P,(D) =tr{p;(D)} probability distribution detector

» First term: £(D) feedback controlled time evolution of system. Can describe nonlinear
feedback protocols.

» Second term: dephasing due to measurement backaction, where
D[A]p = ApA — S{A°, p}

» Last two terms: Fokker-Planck equation for detector time evolution, following an
Ornstein-Uhlenbeck process with superoperator drift coefhicient

A 1 2 A
and diffusion constant ~y / S\

2. Separation of timescales

Assuming thaty is the largest parameter of Eq. (1), the detector quickly reaches and remains
in steady state with respect to the Fokker-Planck terms. Under this condition, the system
evolves, to first order in 1/, as

8t,5t = [LO + )\D[A] + 7_1£corr} Pt (2)

The zeroth order correction is obtained by approximating the system-detector density
operator, in the eigenbasis {|a) } of A, as

A

p(D) = Pt

Z Gaa’ (D)Vaa’
with steady state Ornstein-Uhlenbeck distribution and projection superoperator

Gaa (D) = /4X [rye” WM ID=(Eatéa)/2) Vaa p = {alpla’) |a){a’

Here A |a) = &, |a). The zeroth order Liouville superoperator reads

£o= [ aDL(D)

Z Gaa’ (D)Vaa’

» Equation (2) can describe nonlinear feedback protocols, going beyond the Markovian
master equation derived by Wiseman and Milburn [2].

» Zeroth order contribution implies fluctuation theorems, highlighting the connection
between thermodynamics and information theory, see Sec. 4.
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equation for the system alone. This equation can describe nonlinear feedback, going beyond the
master equation by Wiseman and Milburn [2]. It further implies fluctuation theorems, highlighting
the connection between thermodynamics and information theory.

3. Outline derivation

e Generalized quantum measurement
X ey : AN 02
(=) = K(2)p K1 (2) R = (B0) et gy

The measurement operator K (z) describes how the state changes when outcome z is
observed. The timestep between measurements is dt. A weak continuous measurement is
obtained through repeated measurements, taking \jt — 0.

e Bandwidth
The bandwidth ~ is introduced as a low-pass frequency filter,

¢
D(t) = / dsye™ 7 17%) 2 (s)
such that the detector outcome D(t) is a smoothened version of z(t).

e Feedback

Using the detector outcome D(t), we control the time evolutions between measurements
via L(D).

4. Toy models

In this section, we apply Egs. (1) and (2) on two toy models, highlighting the use of our
formalism.

® (lassical model

» Two-level system coupled to bath which can excite and de-excite the system, see inset Fig.
2. Environmental noise suppresses coherence such that only classical, stochastic dynamics
matter.

» When an excitation is observed, the levels are flipped, extracting the excitation energy A.

» Steady state power, to zeroth order in separation of timescales,

P =TA|(1L = n)np(A) - nlns(A) + 1]} 3)
n=|1—-erf(24/\/7)]/2 ng(A) = [exp(A/kgT) — 1)1
(error probability) (average occupation bath)
np(A) Figure 2. Steady state power production of the

classical toy model. Dashed line correspond to

Eq. (3). Solid, colored lines were calculated
numerically. For strong measurements, the
error probability goes to zero, and feedback is

g always applied correctly. In this regime, the
- ——— T 1 A/ksT = average occupation of the bath limits the
~/T = 100 r ‘1_> 19 power. For weak measurements, error
— /T =10 Vv ; >< . WA probability goes to 1/2, and feedback is applied
— /T'=3 10) 1) randomly, leading to dissipation of energy.
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» Fluctuation theorem relating the probabilities of extracting and dissipating m energy
quanta from bath,
P(—m) _ m[a/ksT-m(52))
P(m)
Information term In[(1 — /n)], entropy production of measurement and feedback
mechanism. Only information during change of system state matters.

e Quantum model
» Qubit coherently driven by external driving field, see inset of Fig. 3.

» Identical measurement and feedback as in classical model. Feedback Hamiltonian given

oy H,(D) = [1 = 0(D)]A [1)(1] + (D) A[0){0] + g cos(At)5,

» Steady state power to first order in separation of timescales, averaged over one
driving period,

_ 2g%°A A?
P="2"2p, _ (4)
Y A2+ 4)?
Do = 24/ N7y 9 F5(1/2,1/2;3/2,3/2; —4X/7) A=+ A%In(2)/2y
(generalized hypergeometric function) (effective dephasing rate)

Figure 3. Steady state power of the quantum 0.25

model. Dashed lines corresponds to Eq. (4).

Solid lines were calculated numerically. For 0.201

strong measurements, the Zeno effect prevents =

coherent evolution and the power vanishes. Z 0.151

For weak measurements, power vanishes due Czﬂm ‘

to random feedback and symmetric driving. = 0.10{,

|
Maximum power determined by trade-off a
between information gain and the Zeno effect. 0.051
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