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In this work we analyse the efficiency and the stored power in a quantum battery 
due to an optical pumping process, and the performance of this quantum battery 
operating as the working fluid of a two-stroke quantum thermal machine.

Our quantum battery consists of a qutrit that is connected to a thermal reservoir 
and to an external work drive (Fig. 1 (a)). The machine includes a fourth level (Fig. 
1 (b)) and operates a cycle where energy is stored through the optical pumping 
and extracted by means of an unitary transformation.

We focus on the limit in which we can adiabatically eliminate the higher energy 
level, i.e., level |m〉 (Fig. 1).

An optically pumped two-stroke thermal 
machine

We assume that initially (t = 0) the system (qutrit) is in a Gibbs state. Then an 
external work drive is turned on, and the system evolves to a nonequilibrium steady 
state, 𝝆NESS, with energy stored in it. In the following ℏ = 1 and kB = 1.

We present an analysis of the efficiency and input power of optical 
pumping in the adiabatic elimination limit as the charging mechanism of a 
quantum battery. We also study the efficiency and output power of this 
charged battery  as the working fluid of a two-stroke thermal machine. We 
show that both the charging of the battery and the thermal machine are 
more efficient when the external drive is resonant to the level that stores 
energy in the battery, even though the regime that achieves the best input 
and output powers takes place when the external drive is resonant to the 
adiabatically eliminated level of the optical pumping scheme.

Fig.5: We plot the efficiency in the ideal short cycle limit, 𝜼SC = Ɛ/Ein, as a function of Δfi = 𝜔f 
- 𝜔i. In this scenario the work performed by the machine is equal to the ergotropy [3], Ɛ, 
stored in the operational steady state 𝝆OSS. Here Ein is the energy injected into the system in 
a cycle.

Fig. 3: We plot the log of the stored power, 𝓟pump = ΔF/𝜏, divided by its maximum, where 𝜏 is the 
time it takes for the system to reach  𝝆NESS from the initial Gibbs state, as function of Δfi = 𝜔f - 𝜔i.

Fig. 1: (a)  Quantum battery model. (b) Quantum thermal machine model.

Fig. 2: We plot the pumping efficiency, 𝜼pump= ΔF/Ein, as a function  of Δfi = 𝜔f - 𝜔i, where ΔF is the 
variation of the Helmholtz free energy (F = E(t) - TS(t)) and Ein is the energy injected into the system 
in the optical pumping process.

We assume that initially (t = 0) the system (qutrit) is an Gibbs state, then an external 
work drive is turned on and the system evolves to an nonequilibrium steady state, 
𝝆NESS, and energy is stored in it. In the following ℏ = 1 and kB = 1.

To analyse the efficiency and the stored power in the quantum battery due to the 
optical pumping process, we define the pumping efficiency, 𝜼pump, and the stored 
power, 𝓟pump, as 

Here, ΔF, is the variation of the Helmholtz free energy (F(t)), Ein is the energy 
injected into the system during the optical pumping process, 𝜏 is the time it 
takes for the system to reach  𝝆NESS from the initial Gibbs state, E(t) is the average 
energy of the system, S(t) is the von Neumann entropy and T is the temperature of 
the thermal reservoir.

Fig. 4: The machine operates in a two-stroke cycle: a discharging stage and a recharging stage [1, 
2]. The total duration of the cycle is given by 𝜏 = 𝜏d + 𝜏r, where 𝜏d is the time duration of the 
discharging stage and 𝜏r is the time duration of the recharging stage. The starting point of our cycle 
is an active state that we shall refer to as an operational steady state 𝝆OSS.

Fig.6: We plot the log of the delivered power, 𝓟SC = Ɛ/𝜏, divided by its maximum, where 𝜏 is 
the total duration of the cycle, as a function of Δfi = 𝜔f - 𝜔i.

As an example, we compute the efficiency and the output power in the ideal case and 
in the short cycle limit  (𝚺j 𝛾j 𝛕 << 1).


