Everything you wanted to know about

the second law (but were afraid to ask) CaixaBank

Philipp Strasberg

Grup d'Informació Quàntica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Q1: How many second laws exist in thermodynamics?

(a) 1

(b) 4

 ∞

Q2: How do you define thermodynamic entropy microscopically?

 $S = k_B \ln W(x)$

(b) $S = -k_B \operatorname{tr}\{\rho \ln \rho\}$

(c) $S = k_B \sum_{x} p(x) [-\ln p(x) + \ln W(x)]$

Q3: Why does entropy increase?

because of incomplete information ("coarse-graining")

because of a low entropy state in the past

because of weak forces that break time-reversal symmetry

Q4: What is entropy production Σ ?

(a) $\Delta S_S - \frac{Q}{T}$

 $\Delta S_{
m tot}$

(c) $D[p(\boldsymbol{\gamma})||p_{\mathrm{tr}}(\boldsymbol{\gamma}^{\dagger})]$

Q5: Does a pure state of an isolated many-body system satisfy $\Delta S_{\mathrm{tot}} \geq 0$ when initialized in a low entropy state?

Yes, always!

No, never!

Most of the times!

Q6: For which states can you rigorously prove $\Delta S_{\text{tot}} \geq 0$ for any (even driven) isolated system?

For all states satisfying $\sum_{x} p(x)[-\ln p(x) + \ln W(x)] = -\text{tr}\{\rho \ln \rho\}$ (b) For all Gibbs states! (c) For all pure states!

Q7: What is Clausius' inequality?

(a) $\Delta S_S - \frac{Q}{T} \ge 0$

(b) $\Delta S_S - \int \frac{dQ}{T} \ge 0$

(c) $\Delta S_S - \frac{Q}{T} \leq 0$

Q8: When is Clausius' inequality identical to the second law?

When the bath stays approximately thermal.

Always!

Never, it's a completely different inequality.

Q9: What does the condition of local detailed balance imply?

No currents at equilibrium.

(b) The steady state is a Gibbs state.

Non-negative entropy production rate.

Q10: Order the following five terms in increasing magnitude for the initial system-bath state $\rho_S(t_0)\otimes e^{-\beta_0 H_B}/Z_B$?

 $(\mathbf{a}) \quad 0$

(b) ΔS_{tot}

(c) $\Delta S_S + \Delta S_B$

(d) $\Delta S_S - \int \frac{dQ}{T}$

(e) $\Delta S_S - \frac{Q}{T_0}$

Answers and Remarks

Q1: (a)

Q2: (c), see von Neumann & Wigner, recently revived by Šafránek, Deutsch & Aguirre

Q3: (b)

Q4: (b)

Q5: (c), see von Neumann's famous H-theorem

Q6: (a)

Q7: (b)

Q8: (a)

Q9: (c)

Q10: (a) \leq (b) \leq (c) \leq (d) \leq (e)

Further Reading

Tutorial: P. Strasberg & A. Winter, First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy, Phys. Rev. X Quantum 2, 030202 (2021)

Resurrecting Clausius: P. Strasberg, M. G. Díaz & A. Riera-Campeny, Clausius inequality for finite baths reveals universal efficiency improvements, Phys. Rev. E Lett. 104, L022103 (2021).

Master equation approach: A. Riera-Campeny, A. Sanpera & P. Strasberg, Quantum systems correlated with a finite bath: Nonequilibrium dynamics and thermodynamics, Phys. Rev. X Quantum **2**, 010340 (2021).

Book: P. Strasberg, Quantum Stochastic Thermodynamics: Foundations and Selected Applications, Oxford University Press (2022)

Acknowledgements

Joint work with María García Díaz, Andreu Riera-Campeny, Anna Sanpera and Andreas Winter. I gratefully acknowledge discussions with Massimiliano Esposito, Kavan Modi, Juan Parrondo and Dominik Šafránek, among many others. I am financially supported by "la Caixa" Foundation (ID 100010434, fellowship code LCF/BQ/PR21/11840014) and also in parts by the Spanish Agencia Estatal de Investigación (project no. PID2019-107609GB-I00), the Spanish MINECO (FIS2016-80681-P, AEI/FEDER, UE), and the Generalitat de Catalunya (CIRIT 2017-SGR-1127).