
Geometric Bounds on the Power of 
Adiabatic Thermal Machines

Microscopic Thermal Machines

𝑊

𝛽r 𝛽e𝑄We consider devices that operate 
between two heat baths 𝜷r and 𝜷e.

• Refrigerator (𝜷r > 𝜷e): work 𝑾 ≡ 𝑱𝒘, is done 
during cycle period 𝝉 with cooling power 𝑱𝒒 =

𝑸/𝝉 and efficiency 𝜺 =
𝑸

𝑾
≤ 𝜺𝑪 ≡ 𝜷e/(𝜷r − 𝜷e)

Main Result: Power-Efficiency trade-off
For refrigerators (heat engines), cooling power 𝑃𝑐 (power 𝑃), 

• Power decays quadratically as Carnot approached. 
• The bound is geometric. The figure of merit 𝑍 becomes 

geometric 𝑍 → 𝒵, substituting the geometric AR coefficients.

𝑃𝑐 ≤ 𝒵 𝜀C − 𝜀 2/𝜀C
2

The isothermal work, 𝐽𝑤
iso, and quasi-static heat current 𝐽𝑞

qs
are defined.

Work input and heat flux,

• Affinities 𝐴𝑞 = 𝛽e − 𝛽r and 𝐴𝑤 = 𝛽e/𝜏. 

• Onsager symmetry, 𝐾𝑞𝑤ȁ𝐴𝑥→0 = −𝐾𝑤𝑞ȁ𝐴𝑥→0, is assumed. 

𝐽𝑤
iso = 𝐽𝑤 ቚ

𝐴𝑞=0
= 𝐾𝑤𝑤𝐴𝑤

𝐽𝑤 − 𝐽𝑤
iso = 𝐾𝑤𝑞𝐴𝑞 .

Adiabatic Response

The efficiency, 

As 𝜏 → ∞, Carnot efficiency can only be reached if the quasi-static 
heat current, 𝐾𝑞𝑞 , vanishes and if 𝑨𝒒 ∝ 𝑨𝒘

𝜶 where 0 < 𝛼 < 1. 

Given 𝑨𝒒 ∝ 𝑨𝒘
𝜶 , where 0 < 𝛼 < 1, we expand the off diagonal 

coefficients in 𝐴𝑞 ,

The work and heat current in adiabatic response (AR),

𝜀

𝜀C
= −

𝐾𝑞𝑤 + 𝐾𝑞𝑞
𝐴𝑞
𝐴𝑤

𝐾𝑤𝑞 + 𝐾𝑤𝑤
𝐴𝑤
𝐴𝑞

𝐾𝑞𝑤 → 𝐿𝑞𝑤 + 𝐿𝑞𝑤
𝑞

𝐴𝑞 𝐾𝑤𝑞 → 𝐿𝑤𝑞 + 𝐿𝑤𝑞
𝑞

𝐴𝑞

The efficiency under new 
scaling argument,

maximised with respect to 𝐴𝑞 ,

with 𝑍 = 𝐿𝑞𝑤
3 /4 (𝐿𝑞𝑤

𝑞
+ 𝐿𝑤𝑞

𝑞
)𝐿𝑤𝑤 and 𝑧 = 𝐿𝑤𝑤/(𝐿𝑞𝑤

𝑞
+ 𝐿𝑤𝑞

𝑞
)

Approaching Carnot Efficiency
𝜀

𝜀C
= 1 +

𝐿𝑞𝑤
𝑞

+ 𝐿𝑤𝑞
𝑞

𝐿𝑞𝑤
𝐴𝑞 +

𝐿𝑤𝑤
𝐿𝑞𝑤

𝐴𝑤
𝐴𝑞

𝜀

𝜀C
≤ 1 − 𝐴𝑤𝐿𝑞𝑤/𝑍 saturated if   𝐴𝑞

∗ = − 𝑧𝐴𝑤

Example: Two-Stroke Refrigerator
Single-qubit refrigerator: Hamiltonian, 𝐻𝜆 = ℏΩ𝜆𝑡𝜎𝑧/2 in a two-stroke 
cycle.

Γ > 0 sets relaxation timescale of 
system.

Thermodynamic Geometry

Stroke I: couple to 𝛽r, 𝜆0 → 𝜆1.

Stroke II: couple to 𝛽e, 𝜆1 → 𝜆𝜏 ≡ 𝜆0.

𝜀/𝜀𝐶

𝐽𝑞/ℏΩΓ
• Fixed 𝐴𝑞 (dashed-lines)

• Unobtainable region (grey) 
is geometrically bounded.

• Bound saturated by 
optimal scaling 𝑨𝒒

∗ (light-

blue) and optimal driving 
(dark-blue)

Thermodynamic quantities,

𝐽𝑤 = 0−
𝜏
𝑑𝑡 𝑓𝑡

𝜇 ሶ𝜆𝑡
𝜇

, 𝐽𝑞 =
1

𝜏
0
𝜏
𝑑𝑡 𝑗𝑡

Thermodynamic force 𝑓𝑡
𝜇

, instantaneous heat-current 𝑗𝑡. 

Set of control parameters 𝝀𝑡.

𝑓𝑡
𝜇

and 𝑗𝑡 are expanded,

• 𝑓𝑡
𝜇
≃ −𝜕𝜇ℱ𝝀𝑡 − 𝛽eℛ𝝀𝑡

𝜇𝜈 ሶ𝜆𝑡
𝜈 +ℛ𝝀𝑡

𝜇𝑞
𝐴𝑞 +ℛ𝝀𝑡

𝜇𝑞𝑞
𝐴𝑞
2 ,  

• 𝑗𝑡 ≃ 𝛽eℛ𝝀𝑡

𝑞𝜇 ሶ𝜆𝑡
𝜇
+ 𝛽eℛ𝝀𝑡

𝑞𝑞𝜇 ሶ𝜆𝑡
𝜇
𝐴𝑞

The AR coefficients have a geometric interpretation,

𝐿𝑤𝑞 𝐿𝑞𝑤

𝐿𝑤𝑞
𝑞

𝐿𝑞𝑤
𝑞 = 𝛾ׯ

𝒜𝝀
𝜇q

𝒜𝝀
𝑞𝜇

𝒜𝝀
𝜇qq

𝒜𝝀
qq𝜇 𝑑𝜆𝜇.

Thermodynamic potentials 𝒜𝝀
𝑥𝑦𝑧

depend on coefficients ℛ𝝀𝑡

𝑥𝑦𝑧
. 𝜸 is path 

taken in the space of control parameters.

ℛ𝝀 and ℱ𝝀
depend only 
on 𝜆 and 𝛽e. 

Coefficient 𝐿𝑤𝑤 has geometric bound corresponding to the 

thermodynamic length 𝓛 characterised by metric 𝒢𝜆
𝜇𝜈

.

ℒ ≤ ර
𝛾

𝒢𝜆
𝜇𝜈
𝑑𝜆𝜇𝑑𝜆𝜈𝐿𝑤𝑤 ≥ ℒ2 where

𝜆(1)

𝜆(2)

𝒜𝜆
𝑥𝑦𝑧

𝛾

a) Thermodynamic vector 
potential

b) Thermodynamic length in 
curvilinear coordinates 𝜆 → 𝜆′

𝜆′(1)

𝜆′(2)

𝛽r

𝛽e

𝜆𝑡

𝐽𝑞𝜏 I

II

𝐽𝑞 ≥ 𝒵 𝜀C − 𝜀 2/𝜀C
2

𝐽𝑞 = 𝐿𝑞𝑤𝐴𝑤 + 𝐿𝑞𝑤
𝑞

𝐴𝑤𝐴𝑞 𝐽𝑤 = 𝐿𝑤𝑤𝐴𝑤 − 𝐿𝑞𝑤𝐴𝑞 + 𝐿𝑤𝑞
𝑞

𝐴𝑞
2

𝐿𝑥𝑦
𝑧

Introduction
Is there a fundamental bound on the power of microscopic thermal devices that operate close to Carnot efficiency?
We show that the power of microscopic thermal machines, operating between two fixed temperatures, decays quadratically as Carnot efficiency is 
approached.
• This result presents a geometric trade-off between power and efficiency.
• The result is universal for devices with any kind of thermodynamically consistent dynamics, for both refrigerators and heat engines.

This work has been published as a Letter in PRE: https://doi.org/10.1103/PhysRevE.105.L052102

The bound is saturated by driving 𝜆𝑡 by the optimal speed function 𝜙𝑡

𝛾
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a) b)

• Heat Engines (𝜷r < 𝜷e): work 𝑾 ≡ 𝑱𝒘, is produced during cycle 

period 𝝉, uptake 𝑱𝒒 = 𝑸 and efficiency 𝜼 =
𝑾

𝑸
≤ 𝜼𝑪 = (𝜷r − 𝜷e)/𝜷r

𝑃 ≤ 𝒵 𝜂C − 𝜂 2/𝜂C

𝐽𝑞
qs
= 𝐽𝑞 ቚ

𝐴𝑤=0
= 𝐾𝑞𝑞𝐴𝑞

𝐽𝑞 − 𝐽𝑞
qs
= 𝐾𝑞𝑤𝐴𝑤 .


