Catalysis in Action

via Elementary Thermal Operations

School of Physical and Mathematical Sciences, Nanyang Technological University

NQ^ħ

Thermal operations (TO)

- any unitary U s.t. $[H_S + H_B, U] = 0$
- Gibbs states τ_B^{β} with any H_B are allowed

find ρ' given $\rho \Leftarrow easy!$

Given ρ, ρ' , implement TO \Leftarrow difficult!

- finding U is nontrivial
- U requires control over many levels

 $\rho_0 \rightarrow \rho_1 \rightarrow \rho_2 \rightarrow \cdots \rightarrow \rho_l$

- each swap implementable w/ Jaynes-Cummings type interactions
- evolution naturally decomposable *might not always easy to find

ETO ⊊ TO ← ETO strictly weaker than TO

What if catalysts are allowed?

Exact catalysis

If $\rho_S \nrightarrow \rho_S'$ but $\rho_S \otimes \sigma_C \rightarrow \rho_S' \otimes \sigma_C$, σ_C : reusable \sim catalyst

'Exact' means: i) no error in final σ_C , ii) no correlation with ρ_S'

What is happening?

- ❖ Generalized free energies cannot increase after a swap
- \rightarrow system-reduced F_S path is impossible w/o catalysts
- \rightarrow total free energy F_{SC} always decreases after each swap
- \Rightarrow catalyst-reduced F_C change & mutual info. should be 0 at the end (exact catalysis)

catalysts function as "free energy storage"

ETO vs. TO vs. CETO₂

Exact advantage even when $d_S = 3$, $d_C = 2$

Decomposing catalytic evolution: an example

System levels: $E_k < E_l < E_m$ Catalyst levels: $E_1 = E_2$ Composite levels:

 $E_{k_1} = E_{k_2} < E_{l_1} = E_{l_2} < E_{m_1} = E_{m_2}$ $\beta^{(x,y)}$: full swap, $M^{(x,y)}$: partial swap

$$\rho_0 \xrightarrow{\beta^{(k_1,m_2)}} \rho_1 \xrightarrow{\beta^{(k_2,m_2)}} \rho_2 \xrightarrow{\beta^{(l_1,m_2)}} \rho_3 \xrightarrow{M^{(l_2,m_2)}} \rho_4$$

$$\xrightarrow{M^{(l_1,l_2)}} \rho_5 \xrightarrow{\beta^{(k_1,m_1)}} \rho_6 \xrightarrow{\beta^{(k_2,m_1)}} \rho_7$$

Bonus: improvement of ETO computability

Finding ρ' reachable via ETO from $\rho \Leftarrow$ difficult! (search over length- l_{\max} swap sequences)

- improved $l_{\text{max}} = d_S! \Rightarrow l_{\text{max}} = \lfloor d_S! / (d_S 2) \rfloor$ for d_S -dimensional system
- fully characterized $d_S = 3$ case (no need to search over sequences)

References

- M. Lostaglio, A. Alhambra, and C. Perry, Quantum **2**, 52 (2018)
- J. Son and N. Ng (In preparation)

And many more, including criteria for good catalysts, easily computable special cases, continuous-time F, etc.