
QClique: Optimizing Performance and Accuracy
in Maximum Weighted Clique

Qasim Abbas1,2(B)[0009−0008−3034−2825],
Mohsen Koohi Esfahani3,1[0000−0002−7465−8003],

Ian Overton1[0000−0003−1158−8527], and
Hans Vandierendonck1[0000−0001−5868−9259]

1Queen’s University Belfast, UK, 2University of Westminster, UK
3Burge Systems, Iran

{qabbas01,mkoohiesfahani01,i.overton,h.vandierendonck}@qub.ac.uk

Abstract. The Maximum Weighted Clique (MWC) problem remains
challenging due to its unfavourable time complexity. In this paper, we
analyze the execution of exact search-based MWC algorithms and show
that high-accuracy weighted cliques can be discovered in the early stages
of the execution if searching the combinatorial space is performed sys-
tematically. Based on this observation, we introduce QClique as an ap-
proximate MWC algorithm that processes the search space as long as
better cliques are expected. QClique uses a tunable parameter to trade-
off between accuracy vs. execution time and delivers 4.7−82.3× speedup
in comparison to previous state-of-the-art MWC algorithms while pro-
viding 91.4% accuracy and achieves a parallel speedup of up to 56× on
128 threads. Additionally, QClique accelerates the exact MWC computa-
tion by replacing the initial clique of the exact algorithm. For WLMC, an
exact state-of-the-art MWC algorithm, this results in 3.3× on average.

Keywords: Graph algorithms · High-performance computing · Maxi-
mum weighted clique · Approximate algorithms.

1 Introduction
The Maximum Weighted Clique (MWC) is a graph analytic problem with

applications in domains such as social sciences and bioinformatics. To accelerate
processing this NP-hard problem, various approximate and exact algorithms
have been proposed [1–6], however, by the fast growth of data, faster algorithms
are required for better exploration of the search space which grows exponentially
as a function of the size of the graph. Maximal Clique Enumeration (MCE) may
be used for this purpose. MCE identifies cliques that cannot be extended to a
larger clique by adding more vertices. A basic approach to MWC is to generate
all maximal cliques and identifying among those the largest-weight clique.

To accelerate the search, pruning rules are designed to avoid accessing un-
necessary parts of the search space. The pruning rules are exact when it is
mathematically certain that the MWC is not pruned, and they are approximate
when the MWC may be pruned. The exact solutions [4–6] have long execution

https://orcid.org/0009-0008-3034-2825
https://orcid.org/0000-0002-7465-8003
https://orcid.org/0000-0003-1158-8527
https://orcid.org/0000-0001-5868-9259

2 Q. Abbas et al.

times as they need to search through the majority of the search space. The
approximate algorithms [1–3], on the other hand, introduce specific problems:

– Experimental evaluation shows that approximated searches may neither con-
verge quickly nor reach high-accuracy solutions. The search is often ad hoc or
informed by random selection; accordingly, high-accuracy weighted cliques (WC)
(i.e., cliques with weights close to MWC) may be missed.

– Approximate algorithms require additional operations (such as graph reduc-
tion [4,7] and estimating the best candidate to join a clique [8]) that increase
memory consumption, increase execution time, and limit scalability.

– Heuristic pruning of the search space makes the discovery of high-accuracy
WC dependent on the processing order of vertices [9, 10].

To counter the above problems, this work introduces a novel pruning heuris-
tic for efficiently finding MWC in specific regions of interest. The heuristic is
based on two key observations: (1) Early in the search, high-accuracy MWC are
identified due to the utilisation of degree or degeneracy ordering1, leading to an
opportunity for reducing the search space by validating no larger-weight cliques
exist. (2) While high-degeneracy vertices are visited more frequently during the
search, they often do not contribute to discovering WC with higher weights.

We introduce the approximate MWC algorithm QClique that dynamically
truncates the search by limiting the frequency of processed vertices. QClique
flexibly adjusts this limit based on (i) the execution status and (ii) a tunable
parameter that controls the trade-off between execution time and accuracy.

Our evaluation shows that QClique is 4.7–82.3 times faster than state-of-
the-art approximate and exact algorithms while presenting 91.4% accuracy, on
average. While QClique is an approximate MWC, its fast and high-accuracy
result allows to compute the exact MWC faster. By replacing the initial seed
of WLMC (a state-of-the-art exact MWC algorithm) with QClique result, the
exact MWC computation is accelerated by 3.3× speedup.

The contributions of this paper are:

– Analyzing the discovery process of MWC and the behavior of vertices.
– Introducing the QClique algorithm, a fast and accurate approximate MWC

algorithm that dynamically adjusts the exploration frequency of each vertex.
– Evaluation of QClique in comparison to state-of-the-art MWC algorithms

and using various graph datasets.

The structure of this article is as follows. Section 2 reviews the terminology
and baseline algorithm. Section 3 motivates the design of QClique. The QClique
algorithm is described in detail in Section 4 and is evaluated in Section 5. Further
related works are reviewed in Section 6 and Section 7 concludes the discussion.

1 Degeneracy ordering is the order of vertices for dynamically degenerating the graph,
i.e., the order of vertices with the lowest degrees when they are removed one after
another from the graph. By removing a vertex, the degree of the other vertices may
be affected and the order of vertices in the list of remained vertices with the lowest
degrees may change.

QClique: Optimizing Performance and Accuracy in MWC 3

2 Background

2.1 Terminology

A graph G(V,E) has a set of vertices V and edges E such that E ⊆ V × V
(we exclude all self-edges in the product V × V as they are irrelevant to clique
problems). The set of neighbors of vertex v ∈ V is given by N(v) = {u ∈
V : (u, v) ∈ E}. A clique C(Vc, Ec) of the undirected graph G(V,E) is a fully
connected subgraph of G (i.e., Vc ⊆ V and Ec ⊆ E) where each two vertices are
adjacent, i.e., Ec = Vc × Vc. The Maximum Clique of a graph is the clique with
the largest number of vertices. A vertex-weighted undirected graph G(V,E,w)
consists of a set of vertices V , edges E, and the weight function w : V →
N. The weight of a clique C = (Vc, Ec) is given by the weight of its vertices:
w(C) = w(Vc) =

∑
v∈Vc

w(v). The Maximum Weighted Clique of a vertex-
weighted graph G is the clique with a maximum weight over all cliques in G.

The density of a graph is defined as d(G) = |E|/|V × V |, where |S| is the
size of set S. The accuracy of an approximate MWC algorithm for a graph is
the proportion of the weight of the largest-found WC to the weight of the MWC
of the graph.

2.2 Clique Algorithms

There are several clique algorithms, of which MWC is just one. Maximum
Clique (MC) searches for the largest-size clique [11]. It is equivalent to MWC with
all vertex weights set to one. While similar, MC admits a variety of pruning rules
to reduce the search space by considering the size of the clique and the degrees
of candidate vertex [12–14]. However, these pruning rules by and large do not
apply to MWC, implying that MWC must consider a substantially larger part
of the search space. The Maximum Edge-Weighted Clique (MEWC) problem
searches for the highest-weight clique where edges carry weights. Maximal Clique
Enumeration (MCE) [15,16] lists all maximal cliques, i.e., the ones that are not
a subset of other cliques. MCE serves also as a blue-print for MWC, MWEC and
MC algorithms as every largest or highest-weight clique must also be a maximal
clique, assuming all weights are non-negative.

2.3 Baseline MWC

Algorithm 1 shows the baseline MWC algorithm based on the Bron-Kerbosch
MCE algorithm [16] which has been widely used as the template for the state-of-
the-art clique algorithms [12,13,17–19]. The algorithm recursively grows a clique
in the variable R by selecting one vertex at a time from the candidate set P . Each
time R grows, the candidate set P is shrunk by retaining only those candidate
vertices that are also a neighbor of the last selected vertex. This ensures that
adding any singular vertex from P to R will retain the property that R is a
clique. The recursion terminates when the candidate list P is empty, at which
point a clique is found.

The set X represents excluded vertices and ensures that no maximal clique
is reported twice and that no non-maximal cliques are enumerated. A unique
maximal clique is found when both P and X are empty. If P is empty and X is
not, the clique held in R is not maximal or has already been enumerated.

4 Q. Abbas et al.

Algorithm 1 Baseline MWC

1: WCmax = {}
2: for vi ∈ V do
3: P = N(v)∩{vi+1, vi+2, ..., vn−1}
4: X = N(v) ∩ {v0, v1, . . . , vi−1}
5: ClqSearch({vi}, P,X,G)
6: end for
7: return WCmax

Algorithm 2 ClqSearch

1: function ClqSearch (R, P, X, G)
2: if P = {} then
3: if X = {} then
4: if w(R) > w(WCmax) then
5: WCmax = R
6: end if
7: end if
8: return
9: end if
10: for v ∈ P do
11: P ′ = P ∩N(v)
12: X ′ = X ∩N(v)
13: ClqSearch(R ∪ {v}, P ′, X ′, G)
14: P = P \ {v}
15: X = X ∪ {v}
16: end for
17: return

It is worth noting that the set X is not required in solving the MWC problem
as a non-maximal clique cannot have a higher weight than the MWC. As such,
it is not considered in Lines 4 and 5 of Algorithm 2.

3 Motivation

3.1 High-Accuracy Cliques Appear Early in The Enumeration

In this section, we consider the growth in the weight of the largest clique
during the execution of MWC search (Section 2.3). We adapted the parallel
MCE code of Blanuša et al [18]2 to track MWC. Figure 1 presents the results
for two graphs: keller6, as a denser graph, and p-hat500-01, as a sparser graph.
The X-axis shows the relative time passed (in percentage) and the Y-axis shows
the weight of the largest-weight clique encountered at that time.

The plots in Figure 1 show that a large MWC growth rate occurs early in
the search such that the first WC with weights greater than 80% of the MWC
are discovered in less than 10% of the total execution time (weight 61 is found at
9.7% of execution for p-hat500-01, and weight 123 is found at 0.9% of execution
for keller6). It is followed by the major portion of the execution to improve the
weight of the best-found WC. In the dense keller6 graph, further exploration
takes 17,057 times longer than the time it takes to find the first high-accuracy
WC. After finding the MWC, further time is spent to establish that no other
clique exists with a greater weight. In the keller6 graph, this accounts to 36.5%
of the execution time. This demonstrate that high-weight cliques can be
discovered early during search process.

2 https://github.com/IBM/parallel-clique-enumeration, commit 9d7d8ae

https://github.com/IBM/parallel-clique-enumeration

QClique: Optimizing Performance and Accuracy in MWC 5

0

80

94

111

(0.4,127)

141
147 149

158

0

26
35
44

55
(9.7,61)

71 72 75

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

140

160

180

keller6

p-hat500-01

Growth in MWC

Relative Time Passed (%)

L
ar

g
es

t
C

li
q

u
e

W
ei

g
h

t

Fig. 1: Growth in MWC during the execution of WLMC

130 135 140 145 150 155 160 165
0

50
100
150
200
250
300
350
400

First

First 10

First 100

keller6 (|V|: 200, |E|: 15K)

Degree

A
v
er

ag
e

V
is

it
s

100 120 140 160 180 200
0
2
4
6
8

10
12
14
16

First

First 10

First 100

p-hat500-01 (|V|: 500, |E|: 32K)

Degree

A
v
er

ag
e

V
is

it
s

Fig. 2: The number of times vertices are processed before reaching the first,
first 10, and first 100 high-accuracy WC (i.e., with weights greater than 0.8 *
MWC) as a function of their degree. Results for dense (keller6, left) and sparse
(p-hat500-01, right) graphs are shown.

3.2 High-Accuracy Cliques Require Few Visits of Each Member

A key performance challenge with combinatorial algorithms such as MWC
is the consideration of a large number of combinations of vertices during the
search; leading to exponential scaling of execution time with graph size. To have
a better understanding, we measure the number of times each vertex is processed
before a number of high-weight cliques are found. We define high-accuracy WC
as WC with weights greater than 0.8 of the weight of the MWC of the graph
and we measure the number of visits per vertex (i.e., the number of times the
vertex is selected as a member of a clique, see Line 10 of Algorithm 2) during
the creation of the first high accuracy WC.

Figure 2 shows the degree distribution of the average number of visits to
vertices for the first, first 10, and first 100 high-accuracy WC and for two graphs,
keller6 and p-hat500-01. The figure groups an average number of visits by the
degree of the vertices. In the sparse p-hat500-01 graph, MWC search has, on
average, visited a vertex no more than twice by the time that the first high-
accuracy clique has been found. When we consider the execution until the first
10 or the first 100 high-accuracy cliques have been identified, then the average
number of visits per vertex increases, and predominantly so for the high-degree
vertices. This aspect is logical: high-degree vertices are better connected, hence
have better chance of appearing in the candidate list. They are also more likely
to appear in multiple maximal cliques.

6 Q. Abbas et al.

Similar trends occur for the dense keller6 graph (Figure 2). However, the num-
ber of visits per vertex is an order of magnitude higher. The first high-accuracy
clique is found for keller6 after visiting a vertex, on average, 30 times. The num-
ber of visits, however, balloons to 200-350 visits per vertex when searching for
the first 100 high-accuracy cliques. In other words, the dense connectivity implies
that many combinations or subsets over vertices are generated during the search,
many of which do not materialize in a maximal clique or in a high-accuracy WC.

In conclusion, while it is necessary to consider the whole search space to
identify the MWC of the graph, the first few times that a vertex is included
in a clique are sufficient for it to demonstrate its potential impact for
being a member of a high-accuracy WC.

4 QClique

4.1 High-Level Description

We observed in Section 3.1 that the high-accuracy WC are found quickly
and in Section 3.2 that the first times vertices are added to a clique are enough
to discover those high-accuracy WC. In other words, the connection between
vertices of the graph facilitates a fast way to reach a close neighborhood of the
MWC that contains high-accuracy WC. However, it requires three conditions:

- Performing the search in the neighborhood of all vertices to identify their
potential fast routes to high-accuracy WC,

- Systematically searching in contrast to the prevalent methods [7, 9, 20] that
randomly search and may miss paths to the MWC neighborhood,

- Steering the search towards favorable WC by preventing it from considering
vertices multiple times as they present their impacts in the first attempts.
We design the QClique algorithm as an approximate algorithm that avoids

the combinatorial growth by limiting the number of times a vertex is visited-
Moreover, adding a vertex to a clique (which is called vertex visit) is the major
computational component in processing the search space and incurs time and
memory costs. To have a high-performance algorithm, we need to restrict the
vertex visits to occasions with a good possibility for finding high-accuracy WC.

We use (i) an array called NumV isits to track the number of times each
vertex is visited, (ii) the tunable parameter k, and (iii) the size of the current
clique (WC) to limit the vertex visits. If NumV isitsv ≤ k × |WC|, we allow
adding vertex v to WC as v has not been processed in the current search space
enough and high-accuracy WC may be discovered by adding v. By increasing k,
QClique explores a greater portion of the search space and finds more accurate
results while requires more execution time. In this way, QClique makes a trade-
off between accuracy and performance.

4.2 QClique Pseudo-Code

Preprocessing. We use the Compressed Sparse Row (CSR) format [21] with
sorted vertices based on the degrees and in descending order.

QClique3. Algorithm 3 shows QClique that receives k and returns WCmax (ini-
tialized in Line 1). For each vertex v, WC stores the current clique CanList is

3 QClique is available on https://github.com/QasimAbbas28/QClique-Euro-PAR

https://github.com/QasimAbbas28/QClique-Euro-PAR

QClique: Optimizing Performance and Accuracy in MWC 7

Algorithm 3 QClique

Input: Graph G(V,E,W), int k
Output: WCmax

1: WCmax = {}
2: // Parallel loop
3: for v = 1; v ≤ |V |; v ++ do
4: WC ← {}
5: NumV isits[1...|V |]← 0
6: CanList← N(v)
7: SearchWC(v,WC,NumV isits,

CanList)
8: end for
9: return WCmax

Algorithm 4 SearchWC()

Input: int v, Array WC, NumVisits,
CanList

1: WC.insert(v)
2: NumV isits[v]++
3: if weight(WC) > weight(WCmax)

then
4: // Atomic compare & swap
5: WCmax ←WC
6: end if
7: NewCanList← CanList ∩N(v)
8: for u ∈ NewCanList do
9: if NumV isitsu ≤ k×|WC| then
10: SearchWC(u,WC,

NumV isits,NewCanList)
11: end if
12: end for
13: WC.remove(v)
14: return

the set of potential vertices to extend the clique (equivalent to P in Alg. 2) and
SearchWC() is called to explore the neighborhood of v.

SearchWC(). Algorithm 4 shows the SearchWC() that performs recursive
tree search to consider different combinations of vertices to be added to the
current clique (WC). After adding the vertex to WC (Line 1), the weight of the
new clique is compared against WCmax (Lines 3–5). Then, to explore if WC can
be extended, in Lines 7–12 the members of the intersection of Nv and CanList
are examined based on the number of times they have been added to a WC
using NumV isits and SearchWC() is called. After considering all members of
NewCanList, v is removed from WC (Line 13) as extension of the clique in the
neighborhood of v is not further examined.

4.3 Parallelism

QClique parallelizes the outer loop over vertices (the for loop in Line 3,
Algorithm 3). By limiting the search using k and NumV isits, QClique limits
the total work performed per vertex, which inherently reduces load imbalance
between vertices.

We have used a separate NumV isits for each vertex which is accessed by
one thread. The other solution was to consider a global NumV isits which is
accessed by concurrent threads. However, this solution suffers from three major
problems: (i) it does not guarantee that the search space around each top-level
vertex is explored to the same extent, i.e., one vertex may consume most al-
lowed visits and leave little for other vertices, (ii) concurrent accesses to indices
of NumV isits requires mutual exclusion or atomics that degrade performance,
and (iii) the visits would be accounted for “out-of-order” in comparison to a

8 Q. Abbas et al.

sequential execution, which would lead to each parallel execution potentially ex-
ploring a different part of the search space, depending on interleaving of counter
updates, which may prohibit the algorithm of finding high-quality WC and make
the quality potentially vary between executions.

To resolve these issues, we create a separate set of visit counters for each
top-level vertex and only track visits within the part of the search space that
corresponds to one top-level vertex. This defines the parallelism in the algorithm
whilst maintaining good accuracy.

4.4 Optimizing Performance in Exact MWC Algorithms

Using larger values for the k parameter covers a larger portion of the search
space and a larger WC is discovered. Ultimately, by setting k to infinity, QClique
is converted to an exact MWC algorithm, but with a great overhead on the exe-
cution time. Using WLMC algorithm [4] which uses the graph’s maximum clique
as its initial WC seed and starts pruning the search space using its weight as the
lower bound. We modify WLMC to use the output of QClique as its initial WC.
This modification (i) reduces the time passes in producing the maximum clique
of the graph and (ii) allows WLMC to prune the search space more effectively.
As such, WLMC produces the exact solution in a shorter time. Section 5.5 shows
that this replacement of initial seed facilitates 3.3× speedup.

5 Evaluation

5.1 Experimental Setup

Machine. We used a machine with 2× AMD EPYC 7702 CPUs, in 128 cores
and threads (i.e., without hyper-threading) and 768 GB memory, CentOS 7.9.

Code. We implemented QClique in C++ with OpenMP [22]. We compare
QClique to WLMC [4]4, FastWClq [7]5, PTC [9], and OTClique [10]6. The first
three ones have single-threaded implementations and we compare them with
single-threaded executions of QClique. OTClique has a parallel implementation
that is compared with the parallel execution of the QClique. WLMC and OT-
Clique are exact algorithms and PTC and FastWClq are approximate algorithms.

Datasets. We use graphs from DIMACS [23], NR [24], SNAP [25], and other
resources [26–28] with random numbers between 0–50 as vertex weights.

Presentation. To prevent confusion with numbers, in this section, we present
the relative results, e.g., speedup and relative accuracy. Numeric values are shown
on Appendix A, Table 1. Average speedup has been calculated using arithmetic
mean. In Figures 3, 4, 5, and 8 each dot presents a dataset.

5.2 Evaluation of Performance and Accuracy

Figure 3 compares performance of single-threaded execution of QClique with
k = 2 to WLMC as an exact MWC algorithm. In Figure 3 the Y-axis shows
the percentage of accuracy provided by QClique in comparison to exact result
in WLMC. The figure shows that QClique provides 4.7 times speedup and its

4 http://home.mis.u-picardie.fr/~cli/EnglishPage.html
5 https://lcs.ios.ac.cn/~caisw/CLQ.html
6 http://www2.kobe-u.ac.jp/~ky/otclique/otclique.html

http://home.mis.u-picardie.fr/~cli/EnglishPage.html
https://lcs.ios.ac.cn/~caisw/CLQ.html
http://www2.kobe-u.ac.jp/~ky/otclique/otclique.html

QClique: Optimizing Performance and Accuracy in MWC 9

 Single-thread speedup

 A
cc

ur
ac

y
(%

)

75

80

85

90

95

100

1 2 4 6 8 10

Fig. 3: Speedup and accuracy of single-threaded execution of QClique (k = 2) in
comparison to WLMC (exact single-threaded MWC)

 128-threaded speedup

 A
cc

ur
ac

y
(%

)

75

80

85

90

95

100

5 10 50 100 500 1000

Fig. 4: Speedup and accuracy of 128-threaded execution of QClique (k = 2) in
comparison to OTClique (exact parallel MWC)

accuracy is always greater than 75% which on average is 91.4% . Table 1 shows
that single-threaded QClique (Column 8) processes larger graphs in less than
270 seconds, while WLMC (Column 11) cannot process them in 9600 seconds.

Figure 4 shows speedup and accuracy of QClique with k = 2 in comparison
to OTClique as a parallel MWC. QClique is 45.9 times faster while the average
accuracy of QClique is 91.4%.

Figure 5 compares QClique (k = 2) vs PTC as a single-threaded approximate
algorithm. In this figure, X-axis shows speedup of QClique compared to PTC and
the Y-axis shows the accuracy of the algorithms. The figure shows that QClique
usually provides accuracy close to 100% while it is 5.3 times faster than PTC.
Table 1 shows that for the two largest graphs, PTC cannot complete processing
in 1800 seconds while QClique execution is finished in less than 270 seconds.

5.3 Accuracy vs. Performance

Figure 6 shows the trade-off between the accuracy and execution time in
two graphs: “p-hat700-1” as the sparser graph and “p-hat-300-3” as the denser
one. For the sparser graph (Figure 6a), when the value of k is 1, the accuracy
is 86.8%. When k is increased, the accuracy on the sparse graph is improved to
100% but this increases the execution time.

10 Q. Abbas et al.

Speedup

A
cc

ur
ac

y
(%

)

60

70

80

90

100

0.10 0.50 1.00 5.00 10.00

PTC QClique

Fig. 5: Speedup and accuracy of single-threaded execution of QClique (k = 2)
in comparison to PTC (approximate single-threaded MWC) - Each graph has a
speedup (the execution time of the PTC divided by QClique) on the X-axis and
its accuracy for these algorithms is shown on the Y-axis.

Percentage accuracy

Ex
ec

ut
io

n
tim

e
(s

ec
)

0.01

0.02

0.04

0.06
0.08

0.2

0.4

85 90 95 100

(a) Graph “p-hat700-1” (density: 0.2)

Percentage accuracy

Ex
ec

ut
io

n
tim

e
(s

ec
)

0.01

0.05
0.1

0.5
1

5
10

70 80 90 100

(b) Graph “p-hat-300-3” (density: 0.7)

Fig. 6: The effects of increasing parameter k in QClique.

For the denser graphs, QClique requires a greater value of k to reach 100%
accuracy and this increases the execution time. The number of neighbors per
vertex is often greater in the dense graph which results in a larger search space
and QClique needs more attempts per vertex to thoroughly explore the search
space and deliver 100% accuracy.

5.4 Scalability

Figure 7 compares the speedup of multi-threaded execution of QClique in
comparison to single-threaded execution. for graphs with lower desnsity values
in Figure 7a and higher ones in Figure 7b. It shows that QClique is scalable on
graphs with higher density.

5.5 Optimizing Exact Algorithms

In Section 4.4, we explained improving the performance of exact algorithms
by deploying QClique to create a high-accuracy WC and to use it as the initial
seed. The Figure 8 shows the speedup provided by this seeding technique. The
last column of Table 1 (named “Q-W”) also includes its performance. As WLMC
is a sequential algorithm, we have used the single-threaded execution of QClique.
Each cell in Column “Q-W” shows the sum of the single-threaded QClique exe-

QClique: Optimizing Performance and Accuracy in MWC 11

#Threads (Thd)

Sp
ee

d-
up

0

20

40

60

8 Thd 16 Thd 32 Thd 64 Thd 128 Thd

p-hat700-3 euroroad p-hat1500-2 p-hat1000-3

(a) Low-density graphs

#Threads (Thd)

Sp
ee

d-
up

0

20

40

60

8 Thd 16 Thd 32 Thd 64 Thd 128 Thd

C250-9 C1000-9 C500-9 DroFN

(b) High-density graphs

Fig. 7: Self-relative parallel speedup of QClique where Thd is the threads

|E|

S
pe

ed
up

0.8

2

4

6
8

20

5E+04 1E+05 5E+05 1E+06

 1

Fig. 8: Speedup of single-threaded execution of QClique and WLMC (after re-
ceiving the seed from QClique) as a function of the number of edges in the graph

cution time and the execution time of modified WLMC for the related dataset.
The results show that single-threaded QClique provides 3.3 times speedup, on
average, to WLMC.

6 Further Related Work

Markov Chain Monte Carlo approach [29] and local search approach [30] are
approximate MWC algorithms but they cannot improve the best-found WC if
getting stuck in local optima [31]. Other approximate algorithms use heuristics
such as tabu search [8, 32], ant colony [33], and genetic algorithm [34]. Kiziloz
and Dokeroglu [9] proposed a heuristic-based technique called the Parallel Tabu
Clique (PTC) algorithm which uses vertex operators to search for possible neigh-
borhoodextensions. FastWClq [7,35] interleaves graph reduction and clique find-
ing. The OTClique [10] algorithm is an exact algorithm that constructs an opti-
mal table by dividing the vertices into subsets and calculating the upper bound
using the sum of the optimal weights of the subgraphs. The Weighted Large
Maximum Clique (WLMC) [4] is a branch-and-bound exact algorithm that ex-
amines the search space of all possible cliques in the graph and based one the
best-founded WC, prunes sub-optimal branches in a recursive manner. Wang

12 Q. Abbas et al.

et al [3] introduced SCCWalk that eliminates the Hamiltonian cycle problem
during the local search.

7 Conclusion
We analyzed the discovery of high-accuracy weighted cliques (WC) and intro-

duced QClique, a novel approximate MWC algorithm that truncates the search
space by dynamically limiting the number of times a vertex is processed as a
member of high-accuracy cliques.

QClique is designed to effectively steer the search to the neighborhood of
high-accuracy WC. In this way, QClique limits the use of set intersections to a
minimum and does not utilise weight-based heuristics and memory-and compute-
intensive operations such as graph reduction. Our evaluation on a wide range
of graphs shows that QClique delivers a high-level scalability and 4.7–82.3×
speedup in comparison to state-of-the-art MWC algorithms while providing
91.4% accuracy, on average. The evaluation also shows that QClique acceler-
ates WLMC, an exact MWC algorithm, by 3.3 times, on average.

A Numeric Results
Table 1 shows the numeric values of evaluation.

Acknowledgments
We are grateful to the Euro-Par anonymous reviewers for the detailed and

constructive comments and to Northern Ireland High-Performance Computing
(NI-HPC), funded by EPSRC (EP/T022175), for computing resources.

This project has received funding from the European Union’s Horizon 2020
Marie Sk lodowska-Curie grant agreement No 945231 and the Engineering and
Physical Sciences Research Council under grant agreements EP/X01794X/1,
EP/Z531054/1 and EP/T022175/1.

References
1. Y. Wang et al. Two efficient local search algorithms for maximum weight clique

problem. In Proc. AAAI Conf. Artif. Intell., volume 30, 2016.
2. SP. Fekete and H. Meijer. Maximum dispersion and geometric maximum weight

cliques. Algorithmica, 38:501–511, 2004.
3. Y. Wang et al. Sccwalk: An efficient local search algorithm and its improvements

for maximum weight clique problem. Artifi. Intelli., 280:103230, 2020.
4. H. Jiang et al. An exact algorithm for the maximum weight clique problem. In

Proc. AAAI Conf. Artif. Intell., volume 31, 2017.
5. S. Shimizu et al. Fast maximum weight clique extraction algorithm: Optimal tables

for branch-and-bound. Discrete Applied Mathematics, 223:120–134, 2017.
6. Z. Fang et al. An exact algorithm based on maxsat reasoning for the maximum

weight clique problem. J. Artif. Intell. Res., 55:799–833, 2016.
7. S. Cai and J. Lin. Fast solving maximum weight clique problem in massive graphs.

In IJCAI, pages 568–574, 2016.
8. Michel Gendreau. An introduction to tabu search. Springer, 2003.
9. HE. Kiziloz and T. Dokeroglu. A robust and cooperative parallel tabu search.

Computers & Industrial Engineering, 118:54–66, 2018.
10. S. Shimizu et al. Parallelization of a branch-and-bound algorithm for the maximum

weight clique problem. Discrete Optimization, 41:100646, 2021.

QClique: Optimizing Performance and Accuracy in MWC 13

G
ra

p
h

s
|V

|
(K

)
|E

|
(K

)
D

en
Q

C
liq

u
e

(k
=1

)
Q

C
liq

u
e

(k
=2

)
W

LM
C

O
TC

Fa
st

W
C

lq
P

TC
Q

-W
M

W
TS

TP
M

W
TS

TP
M

W
TS

TP
M

W
TS

M
W

TS
M

W
TS

sa
n

4
0

0
-0

-7
-2

0.
4

56
0.
7

12
5

1.9
0.
03

14
1

7.
9

1.5
15
7

9.
1
>1
80
0

11
7
38
.5

15
4

43
7.
4

15
7

6.
7

p
-h

at
10

0
0

-3
1.0

37
2

0.
7

26
1

17
.5

0.
4

34
3
34
6.
5

4
8.
2

4
15

87
7.
2
>1
80
0

4
9
4
9.
6

4
15

15
1.6

4
15

78
1.7

p
-h

at
50

0
-0

3
0.
5

94
0.
8

23
2

2.
4

0.
1
30
2

52
.4

5.
8
34
0

65
.4

78
.7

23
9

0.
1
34
0

11
9.
1

34
0

18
.4

p
-h

at
70

0
-3

0.
7

18
3

0.
7

28
1

6.
4

0.
1

36
7

12
9.
1

17
.5

39
8

15
2.
7
>1
80
0

25
0.
0

39
8

12
1.2

39
8

14
8.
5

p
-h

at
15

0
0

-2
1.5

56
9

0.
5

27
0

29
.0

0.
8

4
15

25
9.
6

69
.2

4
27

2,
47
1.0

>1
80
0

19
0
27
3.
0
4
27

31
8.
8

4
27

13
8.
6

p
-h

at
15

0
0

-3
1.5

84
7

0.
8

39
0

58
.9

1.4
4
68

1,9
81
.9

17
7.
2
4
68

2,
52
8.
8
>1
80
0

11
6
56
2.
1

4
13

20
3.
1

4
68

2,
13
7.
6

p
-h

at
30

0
-3

0.
3

33
0.
7

15
9

2.
4

0.
0
1

19
9

3.
8

1.0
4

23
5

1.1
4

0.
7

16
1

0.
2

23
5

85
.7

23
5

0.
2

p
-h

at
70

0
-1

0.
7

60
0.
2

66
0.
7

0.
0
2

76
0.
79

0.
2

76
0.
18

0.
2

72
29
.4

76
4
69
.4

76
0.
5

b
ro

ck
80

0
-3

0.
8

20
7

0.
6

10
8

5.
4

0.
1

16
0

29
.6

5.
9

16
7

25
1.6

4
5.
9

85
26
.1

16
7

29
3.
2

16
7

15
6.
8

b
ro

ck
80

0
-4

0.
8

20
8

0.
6

11
2

5.
4

0.
1

13
7

36
.7

6.
5

14
6

25
3.
1

4
5.
5

14
6
4
0.
7

13
4

28
3.
6

14
6

15
6.
5

c2
50

-9
0.
3

28
0.
9

20
0

0.
3

0.
0
1

27
6

66
.5

1.4
30
2

15
6.
2

18
.5

98
29
.3

30
2

68
.3

30
2

38
.0

c5
0

0
-9

0.
5

11
2

0.
9

27
5

3.
4

0.
1

32
6

12
7.
4

11
.6

39
0

14
0.
5
>1
80
0

15
9

3.
3

39
0

98
.1

39
0

94
.5

c1
0

0
0

-9
1.0

4
50

0.
9

33
2

25
.2

0.
5

37
7
1,0
25
.5

94
.5

4
88

2,
0
94
.7
>1
80
0

27
5
17
5.
9
4
88

14
5.
5

4
88

2,
0
11
.9

c2
0

0
0

-0
5

2.
0
1,0
0
0

0.
5

94
39
.8

0.
9

12
7

27
6.
1
33
.9

12
8
3,
0
56
.9
>1
80
0

79
75
7.
2

12
0

97
3.
6

12
8
3,
0
29
.2

ke
lle

r5
0.
8

22
6

0.
8

15
2

9.
7

0.
2

18
2

11
7.
9

14
.8

18
2

1,0
19
.9
>1
80
0

13
9

3.
3

10
5

23
5.
3

18
2

97
5.
5

g
en

4
0

0
0.
4

72
0.
9

23
3

2.
4

0.
0
5

30
2

30
3.
1

7.
0

35
5
1,0
55
.0

30
2.
0

4
5

10
.3

33
5

94
.3

35
5

84
.6

fr
b3

0
-1

5-
2

0.
5

83
0.
8

16
1

4
.3

0.
1

19
2

68
.8

4
.0

22
4

86
4
.0
>1
80
0

94
31
.1

22
4

13
4
.7

22
4

65
4
.5

p
w

r-
b

cs
1.7

4
.1
0.
0
03

81
88
.6

0.
03

92
91
.7

3.
7

>9
60
0
>1
80
0

71
14
8.
2

81
96
.3

11
2

18
6.
6

sc
c

fb
-m

sg
s

1.9
53
2

0.
3
3,
91
1

41
.7

24
.8

3,
91
1

38
.1

27
.7
3,
91
1

57
.8
>1
80
0
3,
91
1
57
.8

3,
91
1

4
5.
9

3,
91
1

4
9.
9

D
ro

Fn
11
.4

78
8

0.
0
12

10
71
.6

0.
8

13
26
6.
9

18
.8

>9
60
0
>1
80
0

>1
80
0

>1
80
0

13
16
2.
2

ci
t-

D
B

LP
12
.6

50
0.
0
0
1

60
68
.9

1.4
78

17
9.
4

6.
2

>9
60
0
>1
80
0

52
18
3.
8

>1
80
0

88
76
.6

T
ab

le
1:

C
om

p
ar

is
on

of
m

ax
im

u
m

w
ei

g
h
t

(M
W

),
se

ri
al

ex
ec

u
ti

o
n

ti
m

e
(T

S
),

a
n

d
p

a
ra

ll
el

1
2
8
-t

h
re

a
d

ed
ex

ec
u

ti
o
n

ti
m

e
(T

P
)

in
se

co
n

d
s.

W
L

M
C

an
d

O
T

C
li

q
u

e
(O

T
C

)
a
re

ex
ac

t
a
lg

o
ri

th
m

s
h

av
in

g
th

e
sa

m
e

m
a
x
im

u
m

w
ei

g
h
te

d
cl

iq
u

e
va

lu
es

.
Q

C
li

q
u

e,
F

as
tW

C
lq

,
an

d
P

T
C

ar
e

a
p

p
ro

x
im

a
te

al
go

ri
th

m
s.
|V

|a
n

d
|E

|a
re

th
e

n
u

m
b

er
o
f

ve
rt

ic
es

a
n

d
ed

g
es

in
k
il

o.
D

en
si

ty
is

sh
ow

n
as

“D
en

”,
an

d
“Q

-W
”

is
Q

cl
iq

u
e

(w
it

h
k

=
1
)

a
cc

el
er

a
ti

n
g

W
L

M
C

w
h

ic
h

p
ro

d
u

ce
s

ex
a
ct

re
su

lt
s.

14 Q. Abbas et al.

11. Panos M Pardalos and Jue Xue. The maximum clique problem. Journal of global
Optimization, 4:301–328, 1994.

12. B. Pattabiraman et al. Fast algorithms for the maximum clique problem on massive
sparse graphs. In Algorithms and Models for the Web Graph, Cham, 2013.

13. Patric R.J. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics, 120(1):197–207, 2002.

14. Buchanan A. et al. Solving maximum clique in sparse graphs: an o (nm+ n2ˆ
d/4) o (nm+ n 2 d/4) algorithm for d d-degenerate graphs. Optimization Letters,
8:1611–1617, 2014.

15. E. A. Akkoyunlu. The enumeration of maximal cliques of large graphs. SIAM
Journal on Computing, 2(1):1–6, 1973.

16. C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577, 1973.

17. H. Vandierendonck. Differentiating set intersections in maximal clique enumeration
by function and subproblem size. In Proceedings of the 38th ACM International
Conference on Supercomputing: ICS 2024, 2024.

18. J. Blanuša et al. Manycore clique enumeration with fast set intersections. Proc.
VLDB Endow., 13(12):2676–2690, 2020.

19. Patrick Prosser. Exact algorithms for maximum clique: A computational study.
Algorithms, 5(4):545–587, 2012.

20. E. Sevinc and T. Dokeroglu. A novel parallel local search algorithm for the maxi-
mum vertex weight clique. Soft Computing, 24(5):3551–3567, 2020.

21. Y. Saad. Sparskit: a basic tool kit for sparse matrix computations, 1994.
22. L. Dagum and R. Menon. OpenMP: An industry-standard api for shared-memory

programming. IEEE Comput. Sci. Eng., 5(1):46–55, jan 1998.
23. L. Sanchis. Test case construction for the vertex cover problem. DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, 15:315–326, 1994.
24. R. Rossi and N. Ahmed. The network data repository with interactive graph

analytics and visualization. In AAAI, 2015.
25. L. Jure and K. Andrej. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, June 2014.
26. M. Brockington and JC. Culberson. Camouflaging independent sets in quasi-

random graphs. Cliques, coloring, and satisfiability, 26:75–88, 1996.
27. L. Sanchis. Generating hard and diverse test sets for np-hard graph problems.

Discrete Applied Mathematics, 58(1):35–66, 1995.
28. I. Overton et al. Functional transcription factor target networks illuminate control

of epithelial remodelling. Cancers, 12(10):2823, 2020.
29. D. Achlioptas and F. McSherry. Fast computation of low-rank matrix approxima-

tions. JACM, 54(2):9–es, 2007.
30. P. Galinier and A. Hertz. A survey of local search methods for graph coloring.

Computers & Operations Research, 33(9):2547–2562, 2006.
31. D. Achlioptas et al. On the bias of traceroute sampling: or, power-law degree

distributions in regular graphs. JACM, 56(4):1–28, 2009.
32. A. Hertz et al. A tutorial on tabu search. In Proc. of Giornate di Lavoro AIRO,

volume 95, pages 13–24, 1995.
33. D. El-Baz et al. A parallel ant colony optimization for the maximum-weight clique

problem. In 2016 (IPDPSW), pages 796–800, 2016.
34. A. Lambora et al. Genetic algorithm-a literature review. In 2019 (COMITCon),

pages 380–384. IEEE, 2019.
35. S. Cai et al. A semi-exact algorithm for quickly computing a maximum weight

clique in large sparse graphs. JAIR, 72:39–67, 2021.

http://snap.stanford.edu/data

	QClique: Optimizing Performance and Accuracy in Maximum Weighted Clique

