
On Overcoming HPC Challenges of Trillion-Scale
Real-World Graph Datasets

Mohsen Koohi Esfahani1,3, Paolo Boldi2, Hans Vandierendonck1, Peter Kilpatrick1, and Sebastiano Vigna2

1Queen’s University Belfast, United Kingdom
2Università degli Studi di Milano, Italy

3University of Sistan, Iran

https://blogs.qub.ac.uk/DIPSA/MS-BioGraphs

Abstract—Progress in High-Performance Computing in gen-
eral, and High-Performance Graph Processing in particular,
is highly dependent on the availability of publicly-accessible,
relevant, and realistic data sets.

To ensure continuation of this progress, we (i) investigate
and optimize the process of generating large sequence similarity
graphs as an HPC challenge and (ii) demonstrate this process
in creating MS-BioGraphs, a new family of publicly available
real-world edge-weighted graph datasets with up to 2.5 trillion
edges, that is, 6.6 times greater than the largest graph published
recently. The largest graph is created by matching (i.e., all-to-
all similarity aligning) 1.7 billion protein sequences. The MS-
BioGraphs family includes also seven subgraphs with different
sizes and direction types.

We describe two main challenges we faced in generating
large graph datasets and our solutions, that are, (i) optimizing
data structures and algorithms for this multi-step process and
(ii) WebGraph parallel compression technique.

The datasets are available online on https://blogs.qub.ac.uk/
DIPSA/MS-BioGraphs.

Index Terms—Big Data Management and Processing, Graph
Datasets, High-Performance Computing, Biological Networks,
Sequence Similarity Graph, Graph Algorithms

I. INTRODUCTION

Because of the fast increase in the data production rate,
and the existence of unstructured connections in these data,
High-Performance Graph Processing (HPGP) has to date been
widely applied in various fields of science, humanities, and
technology. This fact has two main implications for the effi-
ciency of public research and academia that aim to consider
the real-world challenges and to design practically-applicable
solutions to those challenges. The first effect is the necessity
of having realistic and up-to-date graph datasets and the
second implication is the necessity of considering the effects
of new contributions (such as algorithms, processing models,
parallelization, and data structures) on a wide range of input
datasets to cover different application domains.

However, as we detail in Section II, the public graph datasets
are small, domain-restricted, and not suitable indicators of
real-world data which makes them not ideal for progressing
HPGP. To confront this problem, we investigate and optimize
the HPC process of generating sequence similarity graphs
and demonstrate this process in creating and introducing MS-
BioGraphs, a new family of real-world graphs with up to

2.5 trillion edges that makes them the largest real-world
public graphs [1]. This family contains different graph sizes
and direction types with similar structures that make them
suitable for a range of applications with different input size
requirements. Moreover, this graph family shows a very differ-
ent graph structure in comparison to other real-world graphs
(such as social networks and web graphs) and so, complements
the current graph collection.

We faced two major challenges in optimizing (i) creation
and (ii) compression of these large graphs. The creation of
these large datasets is a multi-step process in which (a) the
dependency between steps and (b) the processing require-
ments (i.e., availability of processing resources, memory, and
storage) should be considered in the selection and creation
of data structures and algorithms of each step. The flow of
data between different steps of a multi-step process have
important effects on the processing efficiency of the steps. As
such, the whole process and processing requirements should
be considered and be optimized by process-wide engineering
and design of data structures and algorithms.

The processing model is one of the main choices in this
optimization. The distributed-memory processing model [2],
[3] implies two restrictions: (i) fixing the degree of paral-
lelism (i.e., the number of machines/processors involved in
the processing) and (ii) limiting the size of processed data to
the total memory of the cluster. On the other hand, the storage-
based processing model [4], [5] does not practically limit
the size of data but deploys only one machine and increases
the processing time. Therefore, we designed the processes as
multi-step tasks where each step is performed as a distributed
parallel computation but without communication between ma-
chines. Machines process the partitions independently from
each other and use the cluster’s shared storage for loading
and storing the (intermediary) data.

The second major problem is efficient compression of graph
datasets to facilitate fast transfer of the created datasets. The
WebGraph Framework [6] provides graph compression at high
scale, but the compression process is sequential and we extend
the WebGraph framework by parallelizing compression.

The extended version of this paper [7] studies some features
of the MS-BioGraphs showing that (i) while these large
biographs follow a skewed degree distribution (similar to other

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
979-8-3503-2445-7/23©2023 IEEE
https://doi.org/10.1109/BigData59044.2023.10386309

https://blogs.qub.ac.uk/DIPSA/MS-BioGraphs
https://blogs.qub.ac.uk/DIPSA/MS-BioGraphs
https://blogs.qub.ac.uk/DIPSA/MS-BioGraphs
https://doi.org/10.1109/BigData59044.2023.10386309

real-world graphs), they expose a different arrangement of
edges in comparison to previous graph types by having tight
connections between the frequently-occurring high-degree ver-
tices that make their graph structure distinct from other real-
world graph types, (ii) weights have a skewed distribution
with a tail close to power-law distribution, (iii) the main graph
and its large subgraphs exhibit a high-degree of connectivity,
and (iv) the asymmetric MS-BioGraphs have a close Push and
Pull Locality which is different from social networks and web
graphs.

The contributions of this paper are introduction of:
• the HPC-optimized multi-step process of creating large

sequence similarity graphs,
• the MS-BioGraphs family as the largest real-world public

graphs and publishing them as open datasets,
• parallel compression in the WebGraph framework, and

This paper is structured as: Section II motivates the dis-
cussion by exploring the needs for large real-world graphs
and considering their effects on progressing HPGP. Section III
introduces the processing model and parallel graph compres-
sion as our solutions for the major challenges in processing
large graphs. Section IV explains the creation process of large
graphs and demonstrates it for creating MS-BioGraphs.

II. MOTIVATION

In this section, we consider (i) the necessity of creating
updated and cross-domain datasets, (ii) the impacts of these
datasets on the progress of HPGP, and (iii) the features of an
ideal graph dataset.

A. Why Do We Need Updated and Real-World Graphs?

(1) While synthetic graph generators [8], [9] can create
large graphs, the structural features of synthetic graphs do not
match the real-world ones. E.g., they may expose several gaps
in the degree distribution [10] and randomly selected vertices
have a large percentage of similar neighbors. As such, the
severity of challenges relating to partitioning, locality and load
balance in synthetic graphs is often much lower than in real-
world datasets. Therefore, the techniques that are sufficient for
synthetic graphs may not be applicable for real-world datasets.

(2) Some graph optimizations are dependent on the archi-
tecture of machines and it is the tension between data size
and the architecture capacities that forms the challenge context
and presents the opportunity to design novel data structures,
algorithms and processing models. E.g., the design of locality-
optimizing algorithms [11], [12], [13], [14], [15] depends on
the fact that CPU’s cache contains a small portion of the
data. By the advent of CPUs with cache sizes of multiple
GigaBytes, the locality optimizing algorithms play no role
for small datasets as accesses to a large portion of data is
covered by cache. Similarly, the progress of distributed graph
processing [2], [3] may be slowed down by increase in per-
machine memory capacity that is enough to host available
datasets. This shows that without large real-world datasets, it
is not possible to progress these architecture-competing HPGP
activities.

(3) Several HPC research fields (such as architecture design,
distributed and disk-based processing, and high-performance
IO) have tight connections and dependencies on graph algo-
rithms and datasets. The effectiveness and realness of graph
datasets guarantees the efforts on the dependent fields to have
real-world impacts.

(4) Creating a real-world graph dataset provides a repre-
sentation of the data that acts as a new source for extract-
ing domain-specific information and knowledge by deploying
graph algorithms. As an example, sequence similarity graphs
have several usages in biology including sequence cluster-
ing [16], predicting pseudogene functions, effective selection
of conotoxins [17], predicting evolution [18] and gene trans-
fer [19].

A comprehensive graph representation of the data is also
beneficial (i) to validate previous hypotheses (that have been
verified on a small portion of data) in a wider perspective and
(ii) to provide new opportunities to make new contributions
by considering the new patterns and connections revealed in
graph representation.

B. Why Do We Need Different Types of Real-World Graphs?

(1) Previous studies have shown that different real-world
graph types exhibit contrasting behaviors with graph analytic
algorithms and optimizations [20]. Examples include the long
execution time of small road networks in Label Propagation
Connected Components [21], [22] and the different impact of
similarity and locality in web graphs and social networks [23].
This implies that a wider range of graph types will be
necessary to better study and comprehend the structure of
graphs and to compare them. This better understanding of
different graph types and their structures will also be helpful
to design synthetic graph generators with greater similarity to
real-world graphs (Section II-A).

(2) A wide range of real-world datasets facilitates cross-
domain evaluation of the new contributions and provides broad
and correct assessment across a variety of use cases (i.e.,
better pruning of the falsifiable insights [24]). Also, we will
have the opportunity to improve several graph algorithms and
optimizations that exploit the structure of graphs [3], [25],
[12], [26], [27], [28], [29].

C. Creating Real-World Graphs: An HPC Problem

(1) Creating real-world graphs is a time-consuming pro-
cess [30], [31], [32] and is periodically repeated. As the size
of input dataset (connections in web graphs, links in social
networks, or similarities in sequences) grows, greater amounts
of computations and processing resources are required.

(2) Some tasks in creating graphs are widely used in deploy-
ing graph algorithms, such as format conversion, transposition,
and symmetrization, are time-consuming. Optimizing these
steps is directly transferred in graph algorithms.

D. The Current Largest Graph Datasets

At present, the last largest public graph dataset we are aware
of is the Software Heritage 2022-04 version-control-history
graph1 [31] with 376 billion edges that was published in 2022.

The largest web graph is Web Data Commons 2012 hyper-
link graph2 [32], with 128 billion edges that was published
about 9 years ago. The largest social network graph is a
snapshot of Twitter on 2010 [33] with 1.5 billion edges.

These graphs are outdated and/or not indicative of the
growth in size of data that is happening in the real world.

E. What Is An Ideal Graph Dataset?

The discussions in this section show that a new family
of graphs should ideally (i) be backed by a real-world phe-
nomenon, (ii) cover a wide range of graph sizes to make it
suitable for different applications, (iii) exhibit new structural
features that are not seen in other real-world graphs, (iv) con-
tain graphs much larger than existing ones and in line with
the exponential growth rate of the worldwide datasets 3 , and
(v) be available as open datasets to research communities.

III. HPC CHALLENGES AND OUR SOLUTIONS

In this section, we present two major challenges we faced
in creating large datasets. Section III-A explores how to
efficiently utilize a small cluster for processing large datasets.
Section III-B explores how to parallelize the compression
process of the large weighted graph datasets. We demonstrate
our solutions for these two challenges in Section IV where we
detail creation of MS-BioGraphs.

A. The Processing Model

We search for a processing model that (i) dynamically
adjusts the degree of parallelism (i.e., the number of ma-
chines/processors involved in the processing) and (ii) does not
restrict the size of processed data to the total memory of the
cluster while machines have access to a shared storage that
hosts the datasets and the intermediary data.

The distributed-memory processing model [2] sets an upper
bound for the size of dataset based on the total memory of
the cluster. This model also makes the waiting time of jobs
dependent on the size of the requested resources. If we need a
greater number of machines, we may need to wait for a longer
time before scheduling the job. Therefore, to optimize cluster
utilization it is necessary to minimize the waiting time.

The storage-based processing model [4], [5], on the other
hand, does not practically limit the size of data, but deploys
one machine and increases the processing time.

To satisfy the mentioned requirements, we deploy a dis-
tributed model in which algorithms are designed as a number
of sequential steps with parallel workloads per step. In each
step, machines contribute to the total processing independently
of each other and the input and output data for each processing

1https://docs.softwareheritage.org/devel/swh-dataset/graph/dataset.html
2http://webdatacommons.org/hyperlinkgraph/2012-08/download.html
3https://www.idc.com/getdoc.jsp?containerId=US49018922 and

https://www.statista.com/statistics/871513/worldwide-data-created

slot is loaded from and stored to the shared storage. So,
machines only communicate (a) to the shared storage to
retrieve/store data and (b) to the scheduler to receive a partition
of a task or to inform completion of a partition.

In this way, each machine requires a memory size that is
enough to complete a partition. This facilitates processing the
datasets whose sizes are greater than the available memory.

Moreover, as the machines do not communicate with each
other, each step can be started as soon as at least one machine
becomes available and new machines can join/leave a running
step. This (i) relaxes the assumption of permanent availability
of a fixed number of resources during the whole execution
time, (ii) minimizes the waiting time, and (iii) optimizes
cluster utilization.

B. Parallelizing Graph Compression
As MS-BioGraphs have binary sizes of up to 20 TeraBytes,

it is necessary to compress them to make their storage, transfer
over the network, and processing more efficient.

To that end, we used the WebGraph framework4 [6] which
is an open-source graph compression framework that has been
continuously maintained and updated during the last 20 years.
This framework provides graph compression and includes a
rich set of graph operations and analytics. Moreover, the users
of languages and frameworks with WebGraph support, such as
Hadoop, C++, Python, and Matlab, benefit from direct access
to MS-BioGraphs.

WebGraph provides facilities for storing edge-labelled
graphs. Labels are stored contiguously in a bitstream in edge
order (i.e., lexicographical source/destination order), and an
offset file containing pointers to the start of the sequence
of labels associated with the neighbors of a vertex. The
bitstream can be loaded into memory or memory-mapped to
support graphs with a larger size than core memory. Moreover,
offsets are loaded using the Elias–Fano representation, a quasi-
succinct data structure that brings the required storage space
for each offset to a few bits [34].

Historically, the design of the labelled facilities in Web-
Graph decoupled the compression of the underlying graph and
the storage of the labels. This approach has the advantage
of implementing a clear separation of concerns and makes
it possible to pair compression schemes and label storage
schemes arbitrarily.

However, in processing MS-BioGraphs, it became clear that
the approach is very inefficient in a number of situations, and
in particular when transposing, symmetrizing or permuting
very large labelled graphs. In all of these operations, graph
edges are first divided into batches that are sorted in core
memory using a parallel sorting algorithm and compressed
on disk; then, one can traverse the resulting transposed (or
symmetrized, or permuted) graph sequentially. However, this
traversal is quite expensive as the compressed representation
is optimized for space and ease of storage, but not for speed
of traversal; ideally, the transformed temporary graph should
be traversed exactly once.

4https://webgraph.di.unimi.it/

 https://docs.softwareheritage.org/devel/swh-dataset/graph/dataset.html
 http://webdatacommons.org/hyperlinkgraph/2012-08/download.html
https://www.idc.com/getdoc.jsp?containerId=US49018922
https://www.statista.com/statistics/871513/worldwide-data-created
https://webgraph.di.unimi.it/

The previous design was thus at odds with this approach, as
two passes were necessary to compress the graph and to store
the labels. Moreover, the current implementation of labelled
graphs did not allow for parallel storage—a fundamental
requirement in processing large-scale graphs.

We extended the WebGraph framework in two directions: in
the first phase, we extended labelled graphs to support parallel
compression of the underlying graph. This first extension
decreased significantly the compression time (scaling is linear
in the number of cores) but did not solve the problem of
multiple passes over the temporary representation.

In the second phase, we partially violated the decoupled
design of labelled graphs in WebGraph, adding to the com-
pression phase of the main storage format class of WebGraph,
BVGraph (that compresses and stores the underlying graph),
an option to store the labels at the same time. This created a
dependency of BVGraph on a specific labelled graph imple-
mentation; that is, the parallel and simultaneous compression
of graph and labels can only happen with a specific, bitstream-
based label representation. However, since recompressing the
underlying graph in a different format can be performed with
very low cost, and the bitstream-based label implementation
is the only presently-available option, the implementation
remains, in practice, highly (albeit not completely) decoupled.

IV. GENERATING MS-BIOGRAPHS

In Section III, we introduced solutions for major challenges
in processing large graphs. In this section, we demonstrate
those solutions to design and implement the algorithms re-
quired in the different steps of creating the MS-BioGraphs.

A. Terminology

A directed graph G = (V,E) is defined by a set of vertices
V and a set of edges (a.k.a. arcs) E ⊆ V × V ; an edge is
an ordered pair (u, v) that indicates an edge from vertex u
to v. In a directed weighted (a.k.a., labelled) graph Gw =
(V,E), the set of edges is a subset of V × V × N, where
(u, v, w) ∈ E represents an edge from u to v with weight w.
The undirected weighted graph Gu = (V,E) is defined as a
directed weighted graph where for each (u, v, w) ∈ E, there
is an edge (v, u, w) ∈ E.

A protein sequence is a string of letters, each letter repre-
senting one of the 20 canonical amino acids. Each of these 20
amino acids is represented by a letter. Similarity is calculated
by comparing aligned amino acids whose matches are not
directional and match values are derived from a symmetrical
matrix (e.g., PAM and BLOSUM). Two sequences may have
multiple matches as the start point of match is not restricted.
For a set of protein sequences, the sequence similarity graph
is a weighted undirected graph whose vertices represent pro-
teins and with an edge (u, v, w) expressing the fact that the
similarity between proteins u and v is w.

Alignment
 Creating

DBs
COO 2 CSC

WebGraph Compression

SymmetrizeEdge
Filtering

Metaclust
0.5 TB

15 TB

MSA500
6 TB

MS
(UC) 20 TB

MS
11 TB

Asym.
Subgraphs (UC)

MSA500
(UC) 10 TB

Removing
Zero-Degrees

Sym.
Subgraphs (UC)

MSA200 2.5 TB

MSA50 0.6 TB

MSA10 0.1 TB

MS200 2.5 TB

MS50 0.6 TB

MS1 14 GB

Fig. 1: Creation Steps (UC: uncompressed)

B. Input Dataset & Environment Setup

Inspired by HipMCL [35], we use the Metaclust
dataset5 [36] that contains 1.7 billion protein sequences in
FASTA format. We collected all similarities produced by the
LAST sequence alignment algorithm6 [37] Version 1293. We
selected LAST as aligner as it shows better single-machine
performance and has been widely used and maintained since
its publication in 2011.

Sequence matching by LAST is performed in two steps:
(i) creating a database (DB) from sequences using a program
called lastdb and (ii) aligning the sequences of a file against
the created database using lastal (with PAM30 scoring
matrix and default values for other options) that outputs the
matched sequences and their scores.

We used 9 machines that are set up in a job-sharing cluster
and not all machines (and not all of their cores and memory
capacity) were permanently available in all steps. The cluster
is backed by a 2 PetaBytes Lustre file system that provided
up to 8 Gbps bandwidth in our experiments.

We have implemented most of our algorithms as extensions
to the LaganLighter framework7 [29], in the C language with
OpenMP parallelization.

C. Process-Wide Data Structures and Algorithms Engineering
and Design

In this section, we design the general process of creating
MS-BioGraphs as a multi-step process by considering the flow
of data and dependencies of steps.

(1) To create MS-BioGraphs, we compute all-against-all
matching of the sequences. We match each sequence only to
sequences with lower IDs. This produces a directed weighted
graph whose symmetric version represents all the matches
and their scores. This imposes the cost of symmetrization but
reduces the alignment computations by 50%.

We have the following steps as depicted also in Figure 1.
First, we need to create LAST database(s) using lastdb

5https://metaclust.mmseqs.com/2018 06/metaclust all.gz
6https://gitlab.com/mcfrith/last
7https://blogs.qub.ac.uk/DIPSA/LaganLighter/

https://metaclust.mmseqs.com/2018_06/metaclust_all.gz
https://gitlab.com/mcfrith/last
https://blogs.qub.ac.uk/DIPSA/LaganLighter/

and then call lastal to create the similarities, i.e., the
asymmetric graph in the coordinate format (COO). The next
step is converting the COO graph to the Compressed Sparse
Columns (CSC) [38] format which is followed by symmetriz-
ing and compression. We also create some subgraphs to
support research studies with different graph size and direction
requirements. Therefore an “Edge Filtering” step is required to
create subgraphs and we need to remove zero-degree vertices.

(2) We need to consider whether to run the lastal in
parallel mode on one single machine. Our preliminary evalu-
ation showed that the lastal does not continuously engage
all processors. The other problem is the long processing time
(366 hours) as a result of deploying one machine.

However, there is a more important implication of running
one instance of lastal and that is its output. The output of
the “Alignment” step is used as input to the “COO to CSC”
step. The CSC format consists of two arrays: the offsets
array and the edges array. The offsets array is indexed
by a vertex ID to identify the index of the first edge of that
vertex in the edges array. In creating the edges array, we
need to read edges from the COO graph and to write each
edge based on the offset identified by its destination endpoint.
This requires random write accesses to the edges array which
requires 8 Bytes per edge (4 bytes for the ID of the source
endpoint and 4 Bytes for the weight), or about 10 TB memory.

As no machine has this size of memory, the other option
is to convert the subgraphs of the COO format to the CSC
subgraphs and then merge the CSC subgraphs to create the
CSC graph. While this can be done in a distributed way (Sec-
tion III-A), it implies one extra reading and one extra writing
of all edges.

So, we face three problems: (i) load imbalance of lastal
in parallel mode, (ii) long execution time in the “Alignment”
step, and (iii) storage overhead in the “COO to CSC” step.

Our solution for this cross-step problem is to partition the in-
put dataset that converts the adjacency matrix of the graph to a
number of blocks. The graph construction is now performed by
calling concurrent instances of lastal for different blocks,
(i.e., pair of partitions) and each instance is run in sequential
mode. This optimizes load balance, increases the cluster
utilization, and significantly reduces the computation time by
concurrently deploying multiple machines (Section III-A).

Each block of the adjacency matrix is stored in a separate
file and allows us to efficiently create the CSC graph in the
distributed model by partially creating the CSC graph for each
partition where it is only needed to load the relevant blocks
(for partition pj , all edges exist in (pi, pj) blocks where i ≤ j)
and we do not need to keep the whole edges array in the
memory. By having a sufficiently large number of partitions,
we ensure the memory space required for a slice of the edges
array is available on each machine.

(3) The output of “COO 2 CSC” (MSA-500) is symmetrized
to create the main graph (MS graph). This is efficiently
done in the distributed model by transposing and merging
the transposed graph with the CSC graph. It is possible to
merge the “COO 2 CSC” and “Symmetrize” steps into one

step by transposing each partition while creating the CSC
format and then merging the transposed subgraphs and CSC.
However, this results in concurrency of two write and one
read storage operations for all edges that may overload the
storage bandwidth. Our evaluation shows that overloading
storage bandwidth in our cluster (with per-user bandwidth
limit) imposes longer delays. However, merging these steps is
beneficial for clusters that provide greater storage bandwidth
limit.

(4) “Edge Filtering” and “Removing Zero-Degrees” are
efficiently done in the distributed model. The last step is
creating the compressed version in WebGraph format which
deploys a shared-memory model.

D. Created Graphs

The MS graph [39] has 2.5 trillion edges and is created
by symmetrizing the MSA500 [40]. The MS graph is used to
create the subgraphs. The undirected subgraphs MS200 [41],
MS50 [42], and MS1 [43] are created by using the weight
of edges as the filtering metric. For the directed subgraphs
MSA200 [44], MSA50 [45], and MSA10 [46] the vertex-
relative weight has been used as sampling metric.

V. CONCLUSION

To provide a more effective HPGP research environment by
accessing realistic and updated datasets with better coverage of
various application-domains, this paper presents solutions for
the challenges in creation and compression of large graphs. We
demonstrated the effectiveness of our solutions in generating
the MS-BioGraphs, with up to 2.5 trillion edges which is 6.6
times greater than the previous largest real-world graph. The
full version of this paper [7] presents a detailed explanation
of generation of MS-BioGraphs and a comparative study of
MS-BioGraphs to other real-world graphs.

ACCESS TO MS-BIOGRAPHS DATASETS

The datasets are open to public access on: https://blogs.qub.
ac.uk/DIPSA/MS-BioGraphs.

ACKNOWLEDGEMENTS

This work was partially supported by (i) the High Perfor-
mance Computing center of Queen’s University Belfast and the
Kelvin-2 supercomputer (UKRI EPSRC grant EP/T022175/1)
and (ii) the SERICS project (PE00000014) under the NRRP
MUR program funded by the EU - NGEU. First author was
also supported by a scholarship from the Department for the
Economy, Northern Ireland and Queen’s University Belfast.

REFERENCES

[1] M. Koohi Esfahani, P. Boldi, H. Vandierendonck, P. Kilpatrick, and
S. Vigna, “Dataset announcement: MS-BioGraphs, trillion-scale public
real-world sequence similarity graphs,” in IISWC’23. IEEE Computer
Society, 2023.

[2] Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger, “KLA: A
new algorithmic paradigm for parallel graph computations,” ser. PACT
’14. New York, NY, USA: ACM, 2014, p. 27–38.

[3] R. Chen, J. Shi, Y. Chen, and H. Chen, “PowerLyra: Differentiated graph
computation and partitioning on skewed graphs,” in Proceedings of the
Tenth European Conference on Computer Systems, ser. EuroSys ’15.
New York, NY, USA: Association for Computing Machinery, 2015.

https://blogs.qub.ac.uk/DIPSA/MS-BioGraphs
https://blogs.qub.ac.uk/DIPSA/MS-BioGraphs

[4] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, ser.
SOSP ’13. New York, NY, USA: Association for Computing Machin-
ery, 2013, p. 472–488.

[5] Y.-Y. Jo, M.-H. Jang, S.-W. Kim, and S. Park, “Realgraph: A graph
engine leveraging the power-law distribution of real-world graphs,” in
The World Wide Web Conference, ser. WWW ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 807–817.

[6] P. Boldi and S. Vigna, “The webgraph framework i: Compression
techniques,” in Proceedings of the 13th International Conference on
World Wide Web, ser. WWW ’04. New York, NY, USA: Association
for Computing Machinery, 2004, p. 595–602.

[7] M. Koohi Esfahani, P. Boldi, H. Vandierendonck, P. Kilpatrick,
and S. Vigna, “MS-BioGraphs: Sequence similarity graph datasets,”
CoRR, vol. abs/2308.16744, 2023. [Online]. Available: https://doi.org/
10.48550/arXiv.2308.16744

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining.” in SDM. SIAM, 2004, pp. 442–446.

[9] H. Park and M.-S. Kim, “Trilliong: A trillion-scale synthetic graph
generator using a recursive vector model,” ser. SIGMOD ’17. New
York, NY, USA: ACM, 2017, p. 913–928.

[10] H. Cao, Y. Wang, H. Wang, H. Lin, Z. Ma, W. Yin, and W. Chen,
“Scaling graph traversal to 281 trillion edges with 40 million cores,” in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 234–245.

[11] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura,
“Rabbit order: Just-in-time parallel reordering for fast graph analysis,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). USA: IEEE, 2016, pp. 22–31.

[12] M. Koohi Esfahani, P. Kilpatrick, and H. Vandierendonck, “LOTUS:
Locality optimizing triangle counting,” in 27th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming (PPoPP
2022). ACM, 2022, p. 219–233.

[13] M. Drescher, M. A. Awad, S. D. Porumbescu, and J. D. Owens, “Boba:
A parallel lightweight graph reordering algorithm with heavyweight
implications,” 2023.

[14] V. Balaji, N. C. Crago, A. Jaleel, and S. W. Keckler, “Community-
based matrix reordering for sparse linear algebra optimization,” in 2023
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2023, pp. 214–223.

[15] A. Trostanovsky, “Vertex-and-edge ordering for faster parallel graph
processing,” Master’s thesis, University of British Columbia, 2023.
[Online]. Available: http://dx.doi.org/10.14288/1.0437140

[16] A. J. Enright, S. Van Dongen, and C. A. Ouzounis, “An efficient
algorithm for large-scale detection of protein families,” Nucleic Acids
Research, vol. 30, no. 7, pp. 1575–1584, 04 2002.

[17] R. A. Mansbach, S. Chakraborty, T. Travers, and S. Gnanakaran, “Graph-
directed approach for downselecting toxins for experimental structure
determination,” Marine Drugs, vol. 18, no. 5, 2020.

[18] B. L. Hie, K. K. Yang, and P. S. Kim, “Evolutionary velocity with protein
language models predicts evolutionary dynamics of diverse proteins,”
Cell Systems, vol. 13, no. 4, pp. 274–285, 2022.

[19] E. Corel, P. Lopez, R. Méheust, and E. Bapteste, “Network-thinking:
graphs to analyze microbial complexity and evolution,” Trends in
Microbiology, vol. 24, no. 3, pp. 224–237, 2016.

[20] M. Koohi Esfahani, P. Kilpatrick, and H. Vandierendonck, “Locality
analysis of graph reordering algorithms,” in 2021 IEEE International
Symposium on Workload Characterization (IISWC’21). USA: IEEE
Computer Society, 2021, pp. 101–112.

[21] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, ser. SOSP ’13. New York, NY,
USA: Association for Computing Machinery, 2013, p. 456–471.

[22] M. Sutton, T. Ben-Nun, and A. Barak, “Optimizing parallel graph
connectivity computation via subgraph sampling,” in 2018 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2018, pp. 12–21.

[23] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation:
A multiresolution coordinate-free ordering for compressing social net-
works,” in Proceedings of the 20th International Conference on World
Wide Web, ser. WWW ’11. New York, NY, USA: Association for
Computing Machinery, 2011, p. 587–596.

[24] K. R. Popper, “The logic of scientific discovery,” Central Works of
Philosophy v4: Twentieth Century: Moore to Popper, vol. 4, p. 262,
2015.

[25] M. Koohi Esfahani, P. Kilpatrick, and H. Vandierendonck, “Exploiting
in-hub temporal locality in SpMV-based graph processing,” in 50th
International Conference on Parallel Processing, ser. ICPP 2021. New
York, NY, USA: Association for Computing Machinery, 2021.

[26] ——, “MASTIFF: Structure-aware minimum spanning tree/forest,” in
36th ACM International Conference on Supercomputing. New York,
NY, USA: Association for Computing Machinery, 2022.

[27] ——, “SAPCo Sort: Optimizing degree-ordering for power-law graphs,”
in 2022 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE Computer Society, 2022.

[28] ——, “Thrifty Label Propagation: Fast connected components for
skewed-degree graphs,” in 2021 IEEE CLUSTER. USA: IEEE Com-
puter Society, 2021, pp. 226–237.

[29] M. Koohi Esfahani, “On designing structure-aware high-performance
graph algorithms,” Ph.D. dissertation, Queen’s University Belfast, 2022.
[Online]. Available: https://blogs.qub.ac.uk/dipsa/ODSAHPGA

[30] P. Boldi, A. Marino, M. Santini, and S. Vigna, “Bubing: Massive
crawling for the masses,” ACM Trans. Web, vol. 12, no. 2, Jun. 2018.

[31] P. Boldi, A. Pietri, S. Vigna, and S. Zacchiroli, “Ultra-large-scale
repository analysis via graph compression,” in 2020 (SANER). London,
ON, Canada: IEEE Computer Society, 2020, pp. 184–194.

[32] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “The graph structure
in the web – analyzed on different aggregation levels,” The Journal of
Web Science, vol. 1, no. 1, pp. 33–47, 2015.

[33] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th International
Conference on World Wide Web, ser. WWW ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 591–600.

[34] S. Vigna, “Broadword implementation of rank/select queries,” in Exper-
imental Algorithms, C. C. McGeoch, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 154–168.

[35] A. Azad, G. A. Pavlopoulos, C. A. Ouzounis, N. C. Kyrpides, and
A. Buluc, “Hipmcl: a high-performance parallel implementation of the
markov clustering algorithm for large-scale networks,” Nucleic Acids
Research, vol. 46, no. 6, 1 2018.

[36] M. Steinegger and J. Söding, “Clustering huge protein sequence sets in
linear time,” Nature Communications, vol. 9, 06 2018.

[37] S. M. Kiełbasa, R. Wan, K. Sato, P. Horton, and M. C. Frith, “Adaptive
seeds tame genomic sequence comparison,” Genome research, vol. 21,
no. 3, pp. 487–493, 2011.

[38] Y. Saad, “Sparskit: a basic tool kit for sparse matrix computations -
version 2,” 1994.

[39] M. Koohi Esfahani, P. Boldi, H. Vandierendonck, P. Kilpatrick, and
S. Vigna, “MS-BioGraphs - MS,” http://blogs.qub.ac.uk/DIPSA/MS-
BioGraphs-MS, 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7820808

[40] ——, “MS-BioGraphs - MSA500,” http://blogs.qub.ac.uk/DIPSA/MS-
BioGraphs-MSA500, 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7820810

[41] ——, “MS-BioGraphs - MS200,” http://blogs.qub.ac.uk/DIPSA/MS-
BioGraphs-MS200, 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7820812

[42] ——, “MS-BioGraphs - MS50,” http://blogs.qub.ac.uk/DIPSA/MS-
BioGraphs-MS50, 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7820819

[43] ——, “MS-BioGraphs - MS1,” http://blogs.qub.ac.uk/DIPSA/MS-
BioGraphs-MS1, 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7820827

[44] ——, “MS-BioGraphs - MSA200,” http://blogs.qub.ac.uk/DIPSA/MS-
BioGraphs-MSA200, 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7820815

[45] ——, “MS-BioGraphs - MSA50,” http://blogs.qub.ac.uk/DIPSA/MS-
BioGraphs-MSA50, 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7820821

[46] ——, “MS-BioGraphs - MSA10,” http://blogs.qub.ac.uk/DIPSA/MS-
BioGraphs-MSA10, 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7820823

https://doi.org/10.48550/arXiv.2308.16744
https://doi.org/10.48550/arXiv.2308.16744
http://dx.doi.org/10.14288/1.0437140
https://blogs.qub.ac.uk/dipsa/ODSAHPGA
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MS
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MS
https://doi.org/10.5281/zenodo.7820808
https://doi.org/10.5281/zenodo.7820808
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MSA500
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MSA500
https://doi.org/10.5281/zenodo.7820810
https://doi.org/10.5281/zenodo.7820810
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MS200
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MS200
https://doi.org/10.5281/zenodo.7820812
https://doi.org/10.5281/zenodo.7820812
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MS50
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MS50
https://doi.org/10.5281/zenodo.7820819
https://doi.org/10.5281/zenodo.7820819
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MS1
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MS1
https://doi.org/10.5281/zenodo.7820827
https://doi.org/10.5281/zenodo.7820827
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MSA200
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MSA200
https://doi.org/10.5281/zenodo.7820815
https://doi.org/10.5281/zenodo.7820815
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MSA50
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MSA50
https://doi.org/10.5281/zenodo.7820821
https://doi.org/10.5281/zenodo.7820821
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MSA10
http://blogs.qub.ac.uk/DIPSA/MS-BioGraphs-MSA10
https://doi.org/10.5281/zenodo.7820823
https://doi.org/10.5281/zenodo.7820823

	Introduction
	Motivation
	Why Do We Need Updated and Real-World Graphs?
	Why Do We Need Different Types of Real-World Graphs?
	Creating Real-World Graphs: An HPC Problem
	The Current Largest Graph Datasets
	What Is An Ideal Graph Dataset?

	HPC Challenges and Our Solutions
	The Processing Model
	Parallelizing Graph Compression

	Generating MS-BioGraphs
	Terminology
	Input Dataset & Environment Setup
	Process-Wide Data Structures and Algorithms Engineering and Design
	Created Graphs

	Conclusion
	References

