
On Designing Structure-Aware
High-Performance Graph Algorithms

A thesis submitted for the degree of
Doctor of Philosophy

by
Mohsen Koohi Esfahani

Master of Computer Engineering, Isfahan University of Technology, Iran

at
The School of Electronics, Electrical Engineering, and Computer Science

Queen’s University Belfast

Supervisors:
Hans Vandierendonck
Peter Kilpatrick

Examiners:
Paul Kelly, Imperial College London
Ivor Spence

October, 2022

On Designing Structure-Aware
High-Performance Graph Algorithms

Abstract

Graph algorithms find several usages in industry, science, humanities, and technol-

ogy. The fast-growing size of graph datasets in the context of the processing model

of the current hardware has resulted in different bottlenecks such as memory locality,

work-efficiency, and load-balance that degrade the performance. To tackle these limita-

tions, high-performance computing considers different aspects of the execution in order

to design optimized algorithms through efficient usage of hardware resources.

The main idea in this thesis is to analyze the structure of graphs to exploit special

features that are key to introduce new graph algorithms with optimized performance.

First, we study the structure of real-world graph datasets with skewed degree dis-

tribution and the applicability of graph relabeling algorithms as the main restructuring

tools to improve performance and memory locality. To that end, we introduce novel

locality metrics including Cache Miss Rate Degree Distribution, Effective Cache Size, Push

Locality and Pull Locality, and Degree Range Decomposition.

Based on this structural analysis, we introduce the Uniform Memory Demands

strategy that (i) recognizes diverse memory demands and behaviours as a source of

performance inefficiency, (ii) separates contrasting memory demands into groups with

uniform behaviours across each group, and (iii) designs bespoke data structures and al-

gorithms for each group in order to satisfy memory demands with the lowest overhead.

We apply the Uniform Memory Demands strategy to design three graph algorithms

with optimized performance: (i) the SAPCo Sort algorithm as a parallel counting sort

algorithm that is faster than comparison-based sorting algorithms in degree-ordering

of power-law graphs, (ii) the iHTL algorithm that optimizes locality in Sparse Matrix-

Vector (SpMV) Multiplication graph algorithms by extracting dense subgraphs contain-

ing incoming edges to in-hubs and processing them in the push direction, and (iii) the

LOTUS algorithm that optimizes locality in Triangle Counting by separating different

caching demands and deploying specific data structure and algorithm for each of them.

Acknowledgements

I am grateful to my great supervisors, Prof. Hans Vandierendonck and Prof. Peter

Kilpatrick, for their comprehensive and continuous support in all steps of this project.

I am grateful to The Department for Economy, Northern Ireland and to The Queen’s

University Belfast for the scholarship of this project. Also, this work has been partially

supported by two projects: Kelvin-2 Supercomputer (EPSRC grant EP/T022175/1) and

DiPET (CHIST-ERA-18-SDCDN-002, EPSRC grant EP/T022345/1).

Contents

Contents 4

1 Introduction 8

1.1 High-Performance Graph Processing and Its Challenges 8

1.2 Research Questions . 11

1.3 Research Scope . 12

1.4 Contributions & Publications . 13

1.5 Thesis Structure . 15

2 Background 16

2.1 Terminology and Graph Representations 16

2.2 Skewed Degree Distribution . 17

2.3 Performance Bottlenecks . 18

2.4 Literature Review . 18

2.4.1 Matrix-Vector Multiplication . 19

2.4.2 Pregel’s Bulk Synchronous Parallel 20

2.4.3 Structure-Aware Graph Partitioning 20

2.4.4 Asynchronous and Partially Asynchronous 21

2.4.5 Out-of-Core Graph Processing . 22

2.4.6 NUMA-Aware Optimizations . 22

2.4.7 Optimizing Locality . 23

3 Analysis of Graph Relabeling Algorithms and Graph Datasets 25

3.1 Introduction . 25

3.2 Prerequisites . 27

3.2.1 SpMV Graph Traversal . 27

3.2.2 Sequential vs Random Memory Accesses 28

3.2.3 Graph Relabeling . 29

3.2.4 Relabeling Algorithms . 29

4

Contents 5

3.2.5 Preprocessing Overheads . 31

3.3 Locality Types and Metrics . 31

3.3.1 Locality Types . 31

3.3.2 Neighbour to Neighbour Average ID Distance 32

3.3.3 Cache Miss Rate Degree Distribution 33

3.4 Locality Analysis of RAs . 34

3.4.1 SlashBurn . 34

3.4.2 GOrder . 37

3.4.3 Rabbit-Order . 38

3.4.4 Observation on Hubs . 39

3.4.5 Real Execution Performance Metrics 39

3.4.6 How Much of Cache Capacity Is “Effectively” Used? 40

3.5 Locality Analysis of Graph Datasets . 42

3.5.1 Web Graphs vs. Social Networks . 42

3.5.2 Push Locality vs. Pull Locality . 43

3.6 Conclusion . 46

4 Uniform Memory Demands Strategy 48

4.1 Introduction . 48

4.2 Analysis and Design Steps . 50

4.3 Applications . 52

4.4 Discussion . 53

5 SAPCo Sort: Structure-Aware Parallel Counting Sort 55

5.1 Introduction . 55

5.2 Counting Sort . 56

5.2.1 Sequential Counting Sort . 56

5.2.2 Parallel Counting Sort . 56

5.3 Algorithm Design . 58

5.3.1 Step 1: Identifying Contrasting Demands & Behaviours 58

5.3.2 Step 2: Considering Potential Solutions 58

5.3.3 Step 3: Matching & Adjusting . 59

5.3.4 Step 4: Merging . 59

5.4 SAPCo Sort Algorithm . 60

5.5 Evaluation . 60

5.5.1 Performance Evaluation . 62

5.5.2 Hardware Instructions and Memory Accesses 63

6 Contents

5.6 Conclusion and Further Applications . 63

6 iHTL: Exploiting in-Hub Temporal Locality in SpMV 65

6.1 Introduction . 65

6.2 Algorithm Design . 66

6.2.1 Step 1: Identifying Contrasting Demands & Behaviours 66

6.2.2 Step 2: Considering Potential Solutions 66

6.2.3 Step 3: Matching & Adjusting . 66

6.2.4 Step 4: Merging . 67

6.3 iHTL: In-Hub Temporal Locality . 67

6.3.1 iHTL Graph . 67

6.3.2 Creating The iHTL Graph . 68

6.3.3 Number of in-Hubs and Flipped Blocks 69

6.3.4 iHTL Processing . 70

6.4 Evaluation . 71

6.4.1 iHTL vs Pull and Push Implementations 71

6.4.2 Memory Accesses and Cache Misses 72

6.4.3 Memory Space Overhead . 72

6.4.4 iHTL vs Relabeling Algorithms . 73

6.4.5 Execution Breakdown & Graph Statistics 74

6.4.6 Buffer Size . 75

6.5 Related Work . 77

6.6 Conclusion & Further Applications . 78

7 LOTUS: Locality Optimizing Triangle Counting 80

7.1 Introduction . 80

7.2 Prerequisites . 81

7.2.1 Terminology . 81

7.2.2 TC Algorithms . 81

7.3 Analysis of The Forward Algorithm for Power-Law Graphs 82

7.3.1 Low Locality in Processing Non-Hub Vertices 82

7.3.2 Lack of Compactness of Graph Topology 84

7.3.3 Fruitless Searches . 84

7.3.4 Highly Dense Hubs Sub-graph . 85

7.4 Algorithm Design . 85

7.4.1 Step 1: Identifying Contrasting Demands & Behaviours 85

Contents 7

7.4.2 Steps 2 and 3: Considering Potential Solutions, Matching, and Ad-

justing . 86

7.4.3 Step 4: Merging . 87

7.5 LOTUS Algorithm . 87

7.5.1 Lotus Graph Structure . 87

7.5.2 Lotus Preprocessing . 88

7.5.3 Counting Triangles in Lotus . 90

7.5.4 How Does Lotus Improve Locality? 91

7.5.5 Graph Partitioning and Load Balancing in Lotus 92

7.6 Evaluation . 93

7.6.1 Comparison to Previous Works . 94

7.6.2 Hardware Counters . 94

7.6.3 Execution Breakdown . 95

7.6.4 Less Power-Law Graphs . 96

7.6.5 Topology Data Size . 98

7.6.6 H2H Bit Array . 98

7.6.7 Squared Edge Tiling . 100

7.7 Further Related Works . 101

7.7.1 TC History . 101

7.7.2 Approximate and Streaming TC . 102

7.7.3 Improvements to TC and Forward Algorithm 102

7.7.4 Distributed and GPU-based TC . 102

7.8 Conclusion and Further Applications . 102

8 Conclusion and Future Directions 104

8.1 Summary . 104

8.2 Limitations & Dependencies . 106

8.3 Suggestions for Future Work . 107

A Experimental Setup 110

A.1 Machines . 110

A.2 Datasets . 111

A.3 Implementation and Source Code . 112

References 113

Chapter 1

Introduction

1.1 High-Performance Graph Processing and Its Challenges

Graphs are simply-defined data structures to represent relationships between objects.

Graph algorithms extract information from these data and are used in a wide range

of different fields of science, industry, and humanities. Finding the shortest path in

computer networks and map applications, searching and ranking web pages [92], rec-

ommendation engines [161], job scheduling [113], and graph databases [5] are sam-

ples of graph applications. In intelligence analysis, graphs are used to identify suspi-

cious activities and threats [40, 141]. In social sciences, graphs are used to represent

groups and social circles, and to model exchange networks and interpersonal commu-

nications [27,101,129]. In biology, graphs are used to represent protein-protein complex

structure [47], to model human and yeast protein interaction [165], and for drug discov-

ery [1].

The size of graph datasets, similar to the size of data produced in different fields, is

growing fast and public graph datasets have up to hundreds of billions of edges. This

large size of graph datasets in the context of the processing model and current hardware

has resulted in long execution times for graph algorithms.

On the other hand, the performance of graph algorithms is also affected by the

structure of graph datasets. Many real-world graphs derived from social networks,

the internet and the world-wide web, or from bio-informatics, show a skewed degree

distribution, following a power-law distribution: a small fraction of vertices with very

large degrees are connected to a disproportionately large fraction of edges. This special

structure and the large size of graph datasets have negative effects on the performance

8

Chapter 1. Introduction 9

of graph algorithms:

• The memory access patterns of graph algorithms are specified by the structure of

graph datasets. This makes it hard to use hardware caches (as the main resources

designed to reduce memory accesses) efficiently for graph algorithms as the size

of cache is much smaller than the total size of data that is continuously accessed,

i.e., only a small fraction of the data can be efficiently accessed through cache. As

a result, it is necessary to improve cache reuse to provide better performance.

• As cache cannot satisfy a large portion of memory accesses, and since a low num-

ber of computation instructions per memory access (load and store instructions)

is performed, memory access is the bottleneck of graph processing. This shows

that reducing the number of memory accesses directly impacts the work-efficiency

and, subsequently, performance of the graph algorithms.

• The skewed degree distribution of these graphs and the dependency of the work

performed for each vertex/edge on the type of graph traversal necessitate de-

signing effective partitioning algorithms to optimize load-balance (i.e., to keep all

concurrent processors busy during the total execution time) of graph algorithms

and to reduce the execution time.

To deal with these challenges two general algorithmic approaches exist: (i) theoreti-

cal analysis of algorithms and (ii) experimental analysis of algorithms in the context of

real execution environment.

In the first approach, a simple processing model is assumed and algorithms are

analyzed and designed for this model. However, as mathematical models of the modern

processors with their various complicated facilities (like memory prefetching, multi-level

caching, and branch prediction) are not accessible either theoretically or practically, pure

algorithm analysis cannot take the execution environment and its implications into

account and cannot provide more details than complexity analysis of algorithms.

In the second approach, high-performance computing researchers use experimental

methods to evaluate different factors that affect the execution time of graph algorithms.

10 1.1. High-Performance Graph Processing and Its Challenges

They use the results of these studies to extract falsifiable insights1 that are used to intro-

duce new algorithms and processing environments (such as processor, cache, memory,

and network architectures) with optimized performance as a result of better adjustment

of algorithms to the computing environments and vice versa.

As examples, they measure execution time and collect the number of memory ac-

cesses, hardware instructions, and cache misses (e.g., [137]); they simulate execution

of graph algorithms to extract the special metrics (e.g., [149, 179]); they measure the

idle time of parallel processors (e.g., [7, 173]); they evaluate the scalability of im-

plementations by changing the number of processors/machines involved in process-

ing (e.g., [130]); they measure and compare the communication and computation times

in distributed graph algorithms (e.g., [177]); they measure the effects of different prefetch-

ing algorithms, cache sizes, and cache replacement algorithms (e.g., [12, 171]); they con-

sider effects of different types of memory accesses and/or different types of memory

architectures (e.g., [153, 173]).

The diversity of graph algorithms and their memory access patterns, however, has

made it difficult (or still impossible) to experience the best performance in reusing an

optimized graph algorithm (or an optimized generalization/abstraction of graph algo-

rithms) for other ones [137]: in some graph algorithms data and/or weights are assigned

to vertices, while in others to edges; some graph algorithms require accessing data of

neighbours of vertices, while others may also need to access the neighbours of each

neighbour of a vertex; in some graph algorithms vertices are processed in the order

1According to the Philosophy of Science, we deploy (at least) two “discovery” methods to achieve new

“knowledge”: (i) the “Justification” method, in which, we use induction to infer new results from the

previous deductions or (imagined-as-true) assumptions, and (ii) the “Falsification” method, in which, we

prune the falsifiable insights by experiments in order to get closer to knowledge. In this approach, it

is necessary for an insight (i.e., temporary knowledge) to be falsifiable: an experiment exists or can be

designed to evaluate its correctness or wrongness (for each individual case in its application domain).

In the Falsification approach, experiments are used to prune the insights; in other words, the main

role of the experiments is not to prove the correctness of a theory (i.e., insight) as experiments are used as

counterexamples to identify the special conditions where a theory is wrong (that is why the insights should

be falsifiable). However, the sequence of experiments are continued until we reach the last (in our timing

manner) finest theory that is closer to the reality/knowledge. While these theories are falsifiable, the last-

level experiment shows the adaptability of the last theory with the environment of the experiments, and

does not act as a counterexample. This also shows that we need to extend the domain of our experiments

to cover more cases in order to better refine our insights.

For further explanations, we refer the reader to the philosophies of Popper and Descartes [91, 116, 126]

and their applications in Computer Science studies [136].

Chapter 1. Introduction 11

derived by their IDs, while in others the order of processing is specified by the previ-

ously processed vertices; in some graph algorithms the size of data that is assigned to

a vertex/edge, is constant during the execution but it may vary in other algorithms; in

some graph algorithms cache is mostly dedicated to data of vertices, while in others

cache may be used mainly to store the topology data. On the other hand, some graph

algorithms have unique features that are effective in delivering a better performance,

but that opportunity may be lost by deploying abstraction2.

Different efforts have been performed to tackle these problems:

• A group of studies have concentrated on providing programming abstractions or

processing models for graph algorithms to design and implement graph process-

ing frameworks that efficiently use hardware resources. These frameworks can

be divided into (i) shared-memory graph frameworks that operate on a single

machine (e.g. [18,51,159,173]), (ii) distributed-memory graph frameworks that de-

ploy multiple machines to process graph datasets (e.g., [38, 67, 69, 73, 88, 112, 146,

177]), (iii) out-of-core frameworks that use external memory as an intermediate

storage to process graphs with memory requirements larger than the available

memory (e.g., [2, 26, 105, 132, 178]), (iv) Graphics Processing Unit (GPU)-based

graph frameworks (e.g. [21, 62, 70, 75, 76, 117]), or (v) combinations of the previous

items (e.g. [172]).

• On the other hand, some studies concentrate on optimizing individual graph al-

gorithms (e.g., [13, 60, 109, 151, 155]).

1.2 Research Questions

While effective efforts have been performed to accelerate graph algorithms, these efforts

are, mainly, focused on optimizing graph algorithms without considering the implica-

tions of the structure of graph datasets on the performance of graph algorithms. The

previous studies on improving performance by using the structure of graph datasets are

divided into two categories: (i) improving graph partitioning [38, 154, 172] and (ii) de-

signing graph relabeling algorithms (e.g. [6, 108, 163]) that change the order of vertices

2As an example, in some graph algorithms we can process an edge twice, in others we cannot do that

as the results may be wrong. Now, if we want to make an abstraction, we need to restrict all edges to be

processed once and this does not allow the implementation of the first group to benefit from the flexibility

of processing some edges multiple times.

12 1.3. Research Scope

aiming to provide better memory locality (therefore, better performance) during graph

traversal (i.e., traversing vertices and their neighbours). We review these works in Sec-

tion 2.4.3 and Section 2.4.7.

Our insight is that we need more investigations about the functionality and effec-

tiveness of the previous works on real-world graphs with skewed degree distribution.

Moreover, the structure of graphs has unidentified implications on the performance

of graph algorithms and requires more analysis in order to understand its effects on

different performance bottlenecks. This analysis helps us to design structure-aware al-

gorithms with optimized performance.

We try to answer the following research questions in this thesis:

• How do relabeling algorithms affect performance of different real-world graphs

with skewed degree distribution? What are the limitations of relabeling algorithms

to improve memory locality?

• What are the structural differences between different types of these real-world

graph datasets?

• How can we exploit the features of these graphs to design algorithms with better

performance?

1.3 Research Scope

In order to specify the research scope, we consider the following aspects:

• In this thesis, we study the performance of graph algorithms for shared-memory

CPU-based systems. However, the insights gained from our study explain features

of data and efficient processing strategies that apply in equal measure to different

processing platforms such as GPU-based and distributed-memory computing.

• We consider the impacts of real-world graph datasets with skewed degree dis-

tributions close to the power-law distribution. They are the largest public graph

datasets. While mathematical formulations of power-law degree distribution ex-

ist, since most real-world graphs are not accurately power-law [31], we consider

the real-world graphs with skewed degree distributions and without limiting the

domain of our study to an accurate mathematical model.

• We limit our study to static graphs. Dynamic graph algorithms [48, 72] (where

Chapter 1. Introduction 13

edges and vertices are gradually added or removed) and streaming graph algo-

rithms [114] (that assume a limited size of available memory) are not considered.

• We assume the graph topology is completely stored in the main memory and there

is no interaction with a secondary storage (like disk, SSD, NAS/SAN, or NVMM)

or network devices during the execution of the graph algorithms. We also do not

consider different methods of loading graphs to the main memory (like reading

from disk, collecting from databases, or calling APIs) and the execution time of a

graph algorithm does not include the loading time.

1.4 Contributions & Publications

First, in Chapter 3, we investigate the effects of graph relabeling algorithms as the main

restructuring tools that are used to improve performance of graph algorithms. Graph

relabeling algorithms assign new IDs to vertices in order to change the order of memory

accesses aiming to provide better locality in memory accesses and increasing cache hits.

We study the structure of power-law graph datasets and the effects of relabeling algo-

rithms on these graphs by introducing new locality metrics including Cache Miss Rate

Degree Distribution, Push Locality and Pull Locality, and Degree Range Decomposition. This

work has been presented in:

• M. Koohi Esfahani, P. Kilpatrick and H. Vandierendonck, "How Do Graph Relabel-

ing Algorithms Improve Memory Locality?," 2021 IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS ’21) [95], and

• M. Koohi Esfahani, P. Kilpatrick and H. Vandierendonck, "Locality Analysis of

Graph Reordering Algorithms," 2021 IEEE International Symposium on Workload

Characterization (IISWC ’21) [96].

The structural analysis of graph datasets in Chapter 3 has a clear message: differ-

ent subgraphs of real-world graphs with skewed degree distribution have contrasting

behaviours even in a simple graph traversal. Some vertices have a low number of neigh-

bours and their processing benefits from caching. The others with great numbers of

neighbours flush cache contents and reduce cache reuse.

To tackle this problem, we introduce the Uniform Memory Demands strategy in

Chapter 4 that addresses the diversity of memory demands in graph algorithms and di-

vides the vertices and/or edges into a number of groups, where each group has uniform

14 1.4. Contributions & Publications

memory demands and behaviours. Then, by designing special data structures and algo-

rithms for each group, their uniform memory demands are satisfied without sacrificing

performance.

We design three graph algorithms by deploying the Uniform Memory Demands

strategy. In Chapter 5, we design the SAPCo Sort algorithm that optimizes performance

in degree-ordering of power-law graphs and is faster than the comparison-based sorting

algorithms. SAPCo Sort, assigns shared data structures for high-degree vertices, while

assigning private data structures for low-degree vertices. This work has been presented

in:

• M. Koohi Esfahani, P. Kilpatrick and H. Vandierendonck, "SAPCo Sort: optimizing

Degree-Ordering for Power-Law Graphs," 2022 IEEE International Symposium on

Performance Analysis of Systems and Software, ISPASS ’22 [100].

In Chapter 6, we use the Uniform Memory Demands strategy to design the iHTL al-

gorithm that optimizes memory locality in Sparse Matrix-Vector (SpMV) Multiplication

graph algorithm. iHTL extracts subgraphs containing incoming edges to in-hubs and

processes them in the push direction instead of the pull direction. In this way, cache is

dedicated to destination of these edges that are much lower in count (than their source

vertices) and data of destinations can be easily maintained in cache. This work has been

presented in:

• M. Koohi Esfahani, P. Kilpatrick and H. Vandierendonck, "Exploiting in-Hub Tem-

poral Locality in SpMV-based Graph Processing," 50th International Conference

on Parallel Processing (ICPP ’21) [94].

Chapter 7 presents the LOTUS algorithm that optimizes memory locality in Triangle

Counting by deploying the Uniform Memory Demands Strategy. Lotus divides the

execution into a number of steps (based on the presence of hub edges in the triangles)

and in each step uses a bespoke data structure and algorithm to concentrate compact

memory accesses into the cache. This work has been presented in:

• M. Koohi Esfahani, P. Kilpatrick and H. Vandierendonck, "LOTUS: Locality opti-

mizing Triangle Counting," 27th ACM SIGPLAN Annual Symposium on Princi-

ples and Practice of Parallel Programming (PPoPP ’22) [98].

While the Uniform Memory Demands strategy concentrates on optimizing graph

algorithms that are affected by the degree distribution of the real-world graphs, we

Chapter 1. Introduction 15

have also considered the special connectivity of these graphs and its impacts on the

connectivity-based graph algorithms to introduce work-efficient algorithms that do not

traverse all edges. These works are not covered in this dissertation and have been pub-

lished in:

• M. Koohi Esfahani, P. Kilpatrick and H. Vandierendonck, "Thrifty Label Propaga-

tion: Fast Connected Components for Skewed-Degree Graphs," 2021 IEEE Interna-

tional Conference on Cluster Computing (CLUSTER ’21) [97] and

• M. Koohi Esfahani, P. Kilpatrick and H. Vandierendonck, "MASTIFF: Structure-

Aware Minimum Spanning Tree/Forest," Proceedings of the 36th ACM Interna-

tional Conference on Supercomputing (ICS ’22) [99].

1.5 Thesis Structure

We review the preliminary definitions and concepts and also the related works in Chap-

ter 2.

In Chapter 3, we investigate the application of graph reordering algorithms for dif-

ferent power-law graph datasets.

Chapter 4 introduces the Uniform Memory Demands strategy. We deploy this strat-

egy to design three algorithms. Chapter 5 introduces the SAPCo algorithm, a structure-

aware parallel counting sort with optimized performance for degree-ordering of power-

law graphs. Chapter 6 introduces the iHTL algorithm that optimizes locality in SpMV-

based graph processing. The LOTUS algorithm that optimizes locality of triangle count-

ing is designed and evaluated in Chapter 7.

Chapter 8 summarizes the efforts and proposes some directions for future research.

The experimental setup is explained in Appendix A.

Chapter 2

Background

In this chapter, we lay the foundation of the discussions. We start by defining graph

types and representations in Section 2.1 that is followed by explanation of the skewed-

degree distribution in Section 2.2. Then, we explain the performance bottlenecks in

Section 2.3 and we review the literature in Section 2.4.

2.1 Terminology and Graph Representations

A graph G = (V, E) has a set of vertices V, and a set of directed edges E. E is a set

of ordered pairs such as (i, j) that represents an edge from vertex i to vertex j. The

adjacency matrix of a graph is a binary matrix representation of the graph: the element

at row i and column j is 1 if E contains an edge from vertex i to j, and 0 otherwise.

N−
v , and N+

v are the set of in-neighbours and out-neighbours of vertex v, respec-

tively [143]. Nv is the set of neighbours of vertex v, i.e., Nv = N−
v ∪ N+

v . In the adjacency

matrix, row i represents the out-neighbours of vertex i, i.e., N+
i and column j represents

in-neighbours of vertex j, i.e., N−
j .

An undirected graph Gu = (V, Eu) has a set of vertices V, and a set of undirected

edges Eu between these vertices. Eu is a set of unordered pairs such as {i, j} that repre-

sents an edge between vertices i and j. In other words, for each undirected edge {i, j},

two directed edges exist: (i, j) and (j, i). As such, if we represent the undirected graph

Gu = (V, Eu) as the directed graph G = (V, E), we have |E| = 2|Eu|.

In an undirected graph, for each directed edge (i, j), the directed edge (j, i) also

exists. So, for each vertex v; N−
v = N+

v = Nv. The adjacency matrix of an undirected

graph is a symmetric matrix and contains 2|Eu| non zero elements.

16

Chapter 2. Background 17

The average degree of a graph is defined as |E|
|V| . Real-world graphs have an average

degree which is much smaller than |V|; in other words, each vertex has a very small

number of edges to other vertices. As a result, a row or column in the adjacency matrix

has a very small number of 1 values. In this way, these graphs are called sparse.

Since the adjacency matrix representation of a sparse graph with a few billion ver-

tices requires a memory size of ExaBytes, data structures with better memory utiliza-

tion are required. The Compressed Sparse Columns (CSC), and Compressed Sparse

Rows (CSR) formats [133] are used for representing the in-neighbours and out-neighbours

of vertices, respectively. The idea is to store the ID of neighbours of vertices instead of

assigning a bit for every possible edge in the adjacency matrix.

CSC and CSR use two arrays: (1) an offsets array containing |V|+ 1 elements, and

(2) an edges array of |E| elements. The offsets array is indexed by a vertex ID (a number

between 0 and |V|) and specifies the index of the first edge of that vertex in the edges

array. The edges array specifies the IDs of source endpoints of edges in CSC and IDs of

destination endpoints of edges in CSR.

Since CSR and CSC representations are the same for a symmetric adjacency matrix,

we use the CSX notation for the representation of an undirected graph.

2.2 Skewed Degree Distribution

The degree distribution of a graph is a plot that shows the frequency of vertices with

the same degree. As an example, in Figure 2.1 the plot named “Frequency” (shown on

the left y-axis) shows the degree distribution of the undirected ClueWeb12 graph (Ap-

pendix A) with 1 billion vertices and 75 billion edges. This figure shows that for each

degree greater than 10K, the number of vertices is smaller than 100.

The plot named “Cumulative Frequency” (shown on the right y-axis) in Figure 2.1

shows the percentage of cumulative number of vertices with degrees less than or equal

to a degree on the x-axis. This plot shows that vertices with degrees less than 1000

include more than 99.3% of the vertices.

This skewed degree distribution, that is mathematically modeled as a power-law

distribution, is observed in real-world graphs: a very small percentage of vertices have

very large degrees while, most of vertices have very small degrees.

18 2.3. Performance Bottlenecks

Figure 2.1: Degree distribution of undirected ClueWeb12 (|V|= 1B, |E|= 75B)

2.3 Performance Bottlenecks

Performance of parallel graph algorithms is affected by a number of factors:

• Memory Locality. Locality is defined as “the tendency for programs to cluster refer-

ences to subsets of address space for extended periods” [49]. By improving locality, cache

reuse is increased and the time processors wait for fetching data from memory is

reduced. Memory locality plays an important role in data-intensive applications

(such as graph algorithms) as memory accesses represent a substantial portion of

the overall processing time.

• Load-Balance. In order to process algorithms by multiple processors (and/or ma-

chines), partitioning algorithms are used to divide the total task into smaller sub-

tasks that are assigned to processors. The optimal condition is to divide the work

in a way that all processors are busy for the same amount of time during the

execution time.

• Work-Efficiency. A task may be performed in multiple ways, and the amount of

total work may be different in each way. The algorithm with the lower number of

hardware instructions is more work-efficient.

2.4 Literature Review

Various programming abstractions and models have been introduced in in high-performance

graph processing literature that we review in this section.

Chapter 2. Background 19

2.4.1 Matrix-Vector Multiplication

The iterative matrix-vector multiplication model is an abstraction for implementing

graph algorithms [65,88,134]. In this model, each vertex has a data (or property) and the

graph algorithms are modeled as multiplication of the adjacency matrix of the graph by

the data of the vertices (as a vector).

For a graph algorithm that visits neighbours of each vertex and processes their data,

the matrix-vector multiplication uses the adjacency matrix representation to model the

graph traversal. Each row of the adjacency matrix is multiplied by the vector to identify

value of the corresponding index in the result. An element on column i and row j of the

adjacency matrix is 1, only if, there is an edge between j and i. Moreover, the elements

with 0 value on the adjacency matrix do not affect the multiplication. As a result,

multiplication of row j by the vector will be sum of those indices of the vector that

are neighbours of j. In other words, matrix-vector multiplication is equal to traversing

neighbours of vertices.

In Pegasus [88], the user defines three functions as operators to specify the actions

to be performed for (i) processing each edge of a vertex, (ii) for merging the output of

processing different edges of a vertex, and (iii) for specifying the new value for data of

a vertex.

This algebraic model is used for implementing a number of graph algorithms in-

cluding Breadth First Search (BFS), Connected Components (CC), Single Source Short-

est Path (SSSP), Hyperlink Induced Topic Search [92], Belief Propagation [86], PageR-

ank [29], Community Detection [176], and HADI [87].

If the graph is sparse, the adjacency matrix is sparse, and the Matrix-Vector Multi-

plication is called Sparse Matrix-Vector Multiplication (SpMV) graph processing that

operates on the sparse representations of the graph.

Pegasus [88] uses the MapReduce programming model to implement each iteration

of the Matrix-Vector multiplication: after processing edges, the output is merged based

on the neighbourhood of vertices to identify new data of vertices.

Cache-blocking is a technique to improve locality of SpMV [78,79]. It works based on

dividing the vector into blocks and applying multiplication in multiple steps in order to

limit the range of data that is accessed in each step that consequently improves locality.

The effects of blocking may be improved by ordering vertices by their degrees [174] and

by applying the blocking only for vertices with the highest degrees [169]. We discuss

20 2.4. Literature Review

these techniques in more detail in Section 6.5.

2.4.2 Pregel’s Bulk Synchronous Parallel

Bulk Synchronous Parallel (BSP) model [158] divides the execution into a number of

steps where machines perform parallel computation during each step and communica-

tions are performed at the end of steps.

The BSP model was first used in graph processing by Pregel [112] for distributed-

memory graph processing. Pregel performs parallel processing of vertices in each step

using user-defined functions and performs communication at the end of each step. In

Pregel, vertices may send messages to other vertices and the messages will be accessible

to the destination in the next step.

Pregel’s BSP, like SpMV, follows an iterative model; however, it is not required to

traverse all edges in each step of BSP. Pregel assigns a state to each vertex and in each

step, processes only vertices with active states. A vertex can deactivate itself or reactivate

other vertices. The steps continue while at least one active vertex exists. The same

semantic is used in shared-memory graph processing frameworks such as [51, 143, 153,

159, 173] where the set of active vertices of each iteration is called a frontier or worklist.

In this way, Pregel’s BSP provides more efficient graph traversals than SpMV for

graph algorithms that do not require processing of all edges in each step (like BFS, CC,

SSSP). For these algorithms Sparse Matrix-Sparse Vector (SpMSpV) Multiplication [32,

64] is used as the vector in the multiplication is not permanently dense.

2.4.3 Structure-Aware Graph Partitioning

Pregel divides vertices between machines. This one-dimensional graph partitioning in-

curs load-imbalance as the work performed per partition may vary, especially, in power-

law graphs whose vertices have widely differing numbers of edges.

PowerGraph [67] introduces a two-dimensional partitioning algorithm that is ap-

plied on edges (and not vertices) in order to provide better load-balance. PowerGraph

minimizes ghost data (local copy of data and neighbourhood of some vertices that are

stored on different machines instead of only one machine) [69] of high-degree vertices

by limiting the number of machines that process their edges between.

PowerLyra [38] reduces the communication cost of PowerGraph (Section 2.4.2) by a

partitioning algorithm that distributes edges of high-degree vertices between machines

Chapter 2. Background 21

and keeps edges of low-degree vertices in the same machine. In this way, PowerLyra

ensures that low-degree vertices do not incur high communication costs (as only high-

degree vertices are replicated which are much smaller in count in comparison to low-

degree vertices) and processing of high-degree vertices experiences better load balance.

In order to provide better load balance in using CPU and GPU integrated devices,

FinePar [172] assigns high-degree vertices to CPU and processes low-degree vertices

using GPU processors as it is easier to provide load balance for low-degree vertices

since (i) the number of low-degree vertices is much greater than the number of high-

degree vertices, and (ii) the amount of work performed for each low-degree vertex is

smaller.

VEBO [154] introduces a partitioning algorithm that distributes high-degree vertices

on different partitions, while trying to keep equal number of edges for each partition.

In this way, VEBO provides better load balance as it prevents high-degree vertices from

being assigned to a small number of partitions.

2.4.4 Asynchronous and Partially Asynchronous

To reduce the overhead of global synchronization at the end of each BSP step, it is

required to have sufficient amount of work in each step such that all machines are fully

occupied. In graph algorithms with varying amounts of work in different steps, it is not

straightforward to reach that target and load-imbalance happens. This becomes worse

if we need a large number of steps as global synchronization at the end of a step may

require more time than its computation.

To reduce the load imbalance of synchronization, asynchronous graph algorithms [74,

124] were introduced that do not require global synchronization. However, asynchronous

algorithms may perform excess work as new works are requested as soon as new up-

dates are found, but newer updates may come and invalidate the older updates and

make the work performed for those older updates redundant1. These multiple updates

for a vertex could happen in the same step of BSP without imposing excess work as

the latest updates of vertices are used for triggering new updates (i.e., new edges to be

processed) in the next step.

As a result, there is a trade-off between load imbalance of synchronous algorithms

1As an example, in finding the shortest path, assume a new shorter path is found for a vertex, and all

of its neighbours need to update their shortest distances. Then, a new shorter path is found for that vertex

that results in new updates for its neighbours. The new updates makes the older updates redundant.

22 2.4. Literature Review

and work inefficiency of asynchronous algorithms. KLA [73] introduces a distributed-

memory graph framework with limited number of asynchronous steps after each global

synchronization. In this way, KLA keeps the processors busy while it controls the

amount of excess work. KLA dynamically adjusts the number of asynchronous steps

by considering the visited vertices and costs of performed excess work.

2.4.5 Out-of-Core Graph Processing

Out-of-core graph processing frameworks use secondary storage to process graphs that

are too large to fit in the main memory. The main challenges in out-of-core processing

are to design a partitioning algorithm that reduces the number of times data is loaded

from/stored on disk.

GraphChi [105] partitions edges based on their destinations and writes incoming

edges to vertices of each part in a file. In each file, edges are sorted by their sources.

In this way, updates for the outgoing edges of the consecutive vertex IDs are written

sequentially in the files. For processing a partition, the related file is read completely,

and the new data of vertices in this partition is calculated. Then, the file of each partition

is partially updated for the outgoing edges from vertices in the current partition to edges

in that partition.

X-Stream [132] introduces a buffering mechanism in disk-based graph processing.

X-Stream divides edges based on their sources. In the scatter phase, each vertex pro-

cesses its outgoing edges and writes the related updates in a buffer. Buffers are stored

on disk after being partially sorted based on the partition of the relevant vertices. In the

gather phase, the buffers containing updates of each partition are read and updates of

vertices are merged to specify their new data that are stored on the relevant file.

The buffering mechanism of X-Stream benefits from hardware prefetching that pro-

vides better bandwidth for sequential accesses in comparison to random accesses either

for main memory or for secondary storage.

GridGraph [178] uses 1D and 2D partitioning to reduce the overheads of reading

and writing data in out-of-core processing.

2.4.6 NUMA-Aware Optimizations

To accelerate memory accesses in shared-memory graph processing in NUMA archi-

tectures, Polymer [173] allocates memory required for topology data on local NUMA

Chapter 2. Background 23

nodes and assigns NUMA-interleaved memory for vertex data.

Polymer uses the partitioning of edges by destinations of GraphChi (Section 2.4.5)

for push traversal that changes random memory accesses in writing data of vertices

from remote (on different NUMA nodes) to local (on the processor’s NUMA node).

This partitioning does not require protecting data of vertices from concurrent writes of

parallel threads as each partition is assigned to a thread. However, this partitioning

requires reading data of source vertices several times; in the worst case, for processing

each partition.

Polymer introduces edge-balanced partitioning for improving load balance in shared-

memory graph processing: each partition contains consecutive vertices and the number

of edges in different partitions is close to |E|
P , where P is number of partitions.

GraphGrind [153] deploys NUMA-aware work-stealing in shared-memory graph

processing and introduces Compressed CSR and CSC (CCSR and CCSC) topology data

representation that facilitate better memory space utilization by storing vertex IDs in the

offsets list to prevent allocating memory for zero-degree vertices.

2.4.7 Optimizing Locality

Since memory accesses are the bottleneck of graph processing, it is important to improve

locality in a way that more reuse of cache contents happens.

The graph relabeling (also called “reordering” or “renumbering”) algorithms try to

increase the cache hit rate by changing the order in which vertices and their edges are

processed, i.e., the order in which random memory accesses are made. In other words,

a relabeling algorithm assigns new IDs to vertices to improve the clustering of memory

accesses into a range that can be mostly satisfied by cache contents.

Figure 2.2 shows an example of a graph and its relabeled version and compares

cache reuse in processing incoming edges to vertices.

On the left side of this figure, we see the main graph and a timetable that shows the

contents of cache in processing this graph. In processing vertex 1, edges 3, 4, and 7 are

accessed in steps 1–3 and cache contains data of vertices 4,7 at the end of processing

vertex 1. We see that only one reuse of cache contents happens for this graph.

On the right side of Figure 2.2 a relabeled version of the graph is shown. The

timetable of the reordered graph shows that in processing incoming edges to the ver-

tices, we have 5 reuses of cache contents.

We present a comprehensive study of reordering algorithms in Chapter 3.

24 2.4. Literature Review

185

7
3

6

4
2 642

8
7

3

5
1⇒

Figure 2.2: Effects of relabeling on processing incoming edges to vertices - Cache size =

2

On the other hand, space filling curves can improve temporal locality without rela-

beling the graph. These techniques have first been investigated for dense linear alge-

bra [37, 52, 115]. More recently they have been applied to graph processing [122, 152].

They are most easily applied when the graph is stored in a coordinate list representation

(that is, the graph is represented as an array of edges and each edge contains IDs of its

source and destination vertices).

Chapter 3

Analysis of Graph Relabeling

Algorithms and Graph Datasets

3.1 Introduction

As the first step of our study on designing structure-aware graph algorithms, in this

chapter, we analyze the functionality of graph relabeling algorithms as the main restruc-

turing tools designed to improve memory locality. This study helps us to understand

the limitations of graph relabeling algorithms, the main structural features of real-world

graphs with skewed degree distribution, and how these features affect the functionality

of relabeling algorithms and partitioning algorithms. Moreover, we will identify the

design requirements of graph algorithms that should be taken into account in order to

design efficient algorithms for these graph datasets.

In Section 2.4.7, we explained that a relabeling algorithm (RA) improves locality of

a graph traversal by assigning new IDs to vertices in order to cluster memory accesses

into a shorter range that can be better satisfied by cache contents.

However, as identifying the optimal order is a NP-complete problem [163], different

heuristics are employed in RAs based on assumptions about graph structure or execu-

tion environment [6, 22, 25, 45, 71, 90, 108, 125, 142, 145, 150, 163, 166].

Some studies investigate the impact of RAs on graph analytics [10, 11, 44, 59] by

evaluating the general effect of RAs based on the execution time of graph analytics and

do not explain how RAs work or how they affect locality of different graphs in different

ways, useful for some, neutral or destructive for others. In order to reach effective

and applicable locality optimizing algorithms, there is still a need to understand the

25

26 3.1. Introduction

strengths and weaknesses of previous efforts.

A key stumbling block to analyzing RAs is the availability of suitable metrics and

tools. Numerous metrics are available, but none is fully effective in providing insight

into vertex relabeling. Graph topology metrics [28, 110, 111] summarize the character-

istics of graphs independently of execution properties like processing order and vertex

ID assignment. As such, they are great for analysing the graph, but do not reflect on

execution efficiency. Reuse distance curves [19, 53, 54, 85] are an established means to

assess the general degree of locality in programs. In the case of graph processing, reuse

distance distributions are determined by the processing order and vertex IDs; however,

they do not facilitate analysing the effectiveness (or shortcomings) of RAs. Moreover,

reuse distance curves are practical only for comparing locality of a graph as a whole and

do not reveal detailed information about the impact of RAs. The large size of graphs

is another source of problems that makes it highly time-consuming to visualize graphs,

to simulate execution, or to apply Monte Carlo-style trial and error methods to find

patterns in the execution. What is lacking are light-weight metrics and techniques to

analyze locality at a finer scale than the whole graph.

In this chapter, we study three state-of-the-art RAs: SlashBurn [108], GOrder [163],

and Rabbit-Order [6]. We identify different locality types in a parallel graph processing

environment. Then we introduce a bespoke technique for each RA to explain how it

affects locality. We use real execution metrics (such as execution time, last level cache

misses, and DTLB misses), and by introducing a new cache simulation method, Effective

Cache Size and novel structural metrics (such as Asymmetricity distribution, Degree

Decomposition, and Push and Pull Locality), we compare contrasting effects of RAs on

different graphs and present a structural analysis of graph datasets.

In the experiments in this chapter, we use the SkyLakeX machine (Appendix A). As

we use different methods in this chapter (simulation, real execution, and calculation of

identifying special metrics in the graph datasets), tables and figures start with a word

that specifies the method used for extracting the data.

Section 3.2 explains the background materials. We introduce the locality types, the

graph-specific cache simulation technique, and the AID metric in Section 3.3. Section 3.4

analyzes the RAs. Section 3.5 demonstrates the structural analysis of datasets.

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 27

3.2 Prerequisites

3.2.1 SpMV Graph Traversal

In Section 2.4.1, we explained the SpMV graph traversal that processes all edges of the

graph. In this section, we explain more details of SpMV.

Traversal Direction. SpMV can be performed in two directions:

• In the pull direction, each vertex aggregates data of its in-neighbours. As we see

in Algorithm 1, the outer loop (Lines 1-5) traverses vertices and the inner loop

(Lines 3-4) traverses all incoming edges to the vertex. In iteration i, the data of a

vertex (Di+1
v) is calculated using the vertex data (Di

u) of its in-neighbours.

• In the push direction, vertices update the data of their out-neighbours. Algo-

rithm 2 shows the push direction. The outer loop (Lines 3-5) traverses vertices and

the inner loop (Lines 4-5) traverses all outgoing edges from a vertex. In iteration i,

the data of all out-neighbours of a vertex (Di+1
u) is updated by its data (Di

v).

Topology and Vertex Data. Based on the adjacency matrix definition (Section 2.1), vis-

iting incoming edges in a pull traversal corresponds to a column-major traversal of the

adjacency matrix and visiting outgoing edges in a push traversal corresponds to a row-

major traversal. Consequently, the pull traversal uses the CSC format and the push

traversal uses the CSR format.

We use graph average degree (|E||V|) as the threshold between low-degree vertices (LDV)

and high-degree vertices (HDV). Vertices with degree greater than
√
|V| are called hubs

(borrowed from huge node definition in GOrder). Hubs are divided into in-hubs and

out-hubs. A vertex is an in-hub if its in-degree (the number of vertices that have edges

to that vertex) is greater than
√
|V| and is an out-hub if the out-degree is greater than√

|V|.
As we saw in Algorithm 1 and Algorithm 2, in addition to topology data, the data of

vertices (old data: Di and the new data: Di+1) are stored in arrays. Each array contains

|V| elements and is indexed by a vertex ID.

Parallelisation. In push direction, each vertex updates data of its outgoing edges. There-

fore, it is possible that data of a vertex with multiple in-neighbours to be updated con-

currently. As a result, it is required to protect data of vertices in the push direction

through (1) atomic instructions, (2) buffering (Section 2.4.5), or (3) partitioning edges by

28 3.2. Prerequisites

Algorithm 1: Pull SpMV

Input: G(V, E), Di

Output: Di+1

1 for v ∈ V do
2 sum = 0;
3 for u ∈ N−

v do
4 sum += Di[u];
5 Di+1[v] = sum;

Algorithm 2: Push SpMV

Input: G(V, E), Di

Output: Di+1

1 for v ∈ V do
2 Di+1[v]=0;
3 for v ∈ V do
4 for u ∈ N+

v do
5 Di+1[u]+= Di[v];

destination (Section 2.4.6).

Pull traversal, on the other hand, does not require protection from concurrent ac-

cesses as write memory access for each vertex is performed only once. As a result,

pull traversal is faster than push by traversing edges. In this chapter, we use the pull

direction SpMV.

3.2.2 Sequential vs Random Memory Accesses

Here, we explain memory access types using the concepts introduced by Zhang, et al. [173].

In SpMV traversal, memory accesses for reading neighbours of a vertex (Line 3 of Algo-

rithm 1 and Line 4 of Algorithm 1) are performed sequentially and are accelerated by

hardware prefetchers. Moreover, each edge in the edges array is accessed only once dur-

ing a SpMV traversal. So, accesses to each element of the edges array in the topology

data are not repeated and cache lines containing these elements show little locality for

a number of consecutive accesses to adjacent elements inside each cacheline.

In Line 4 of Algorithm 1, a memory access is made for reading data of vertex u

(Di[u]) which is an in-neighbour of vertex v. Similarly, in Line 5 of Algorithm 2, a

memory access is made for updating data of vertex u (Di[u]) which is an out-neighbour

of vertex v. So, accessing data of a vertex such as u is repeated in processing each of

its neighbours. In total, SpMV makes |E| accesses to |V| elements of the data array. On

average, each vertex data is accessed |E|
|V| times; however, accesses to the data of a vertex

are dispersed among |E| accesses. Since |E| ≫ |V| and accesses are too unstructured to

predict the next accesses accurately using typical modern hardware predictors and are

called random.

In the pull direction each vertex reads the old data (Di) of its in-neighbours and

writes its new data (Di+1). So, random read memory accesses are made to the old data

of vertices.

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 29

In the push direction, each vertex updates the new data of its out-neighbours by its

old data. So, random memory accesses are made for writing the new data of vertices.

3.2.3 Graph Relabeling

In order to accelerate execution by preventing expensive memory accesses, the pro-

cessor cache tries to store the frequently and/or recently accessed data; however, the

skewed degree distribution of large real-world graphs results in a huge number of ran-

dom accesses that cannot be fully satisfied by the cache (with limited capacity). As a

result, it is necessary to improve locality of random accesses to accelerate the graph

traversal.

Random accesses to data of vertices are specified by (1) the order in which vertices

are processed and (2) edges of vertices. RAs keep the second factor unchangeable and

concentrate on the first factor: RAs rearrange the relative order between vertices to

change the order of edges and, consequently, the order of random accesses.

As an example, Figure 2.2 shows that vertices 2,5,6, and 8 become vertices 1–4 after

relabeling and the vertices with consecutive IDs have more common neighbours that

increases the opportunity of reuse in processing vertices (i.e., accessing data of their

neighbours).

An RA receives a graph as its input and creates a relabeling array of size |V| to

permute vertex IDs. The relabeling array is indexed by the old ID of a vertex to specify

the new ID. Using the relabeling array, the new CSC/CSR representations are created.

3.2.4 Relabeling Algorithms

This section explains the RAs studied in this chapter.

SlashBurn (SB) [108] considers hubs of the graph as the main connector between ver-

tices and uses this feature to detect communities1 of vertices by removing hubs and

finding connected components that represent communities. This process continues in

the next iteration for the giant connected component (GCC) - the community with the

greatest number of edges. SB assigns consecutive IDs to hubs of the main graph and the

giant communities starting from 0 (based on their degrees) and vertices in a community

also receive contiguous IDs.

1A number of vertices that are tightly connected to each other form a community.

30 3.2. Prerequisites

We selected SB as it targets specifically real-world graphs; moreover, it is a rep-

resentative of degree-ordering RAs. The original implementation of SlashBurn2 is in

MATLAB and we implemented a parallel version of SB in the C language that uses

“basic hub-ordering” and selecting 0.02|V| vertices (as suggested in the paper) in each

iteration.

GOrder (GO) [163] prioritizes neighbours of vertices by defining a “score” function

between two vertices:

S(u, v) = Ss(u, v) + Sn(u, v).

The sibling score (Ss(u, v)) is the number of common in-neighbours between u and v,

and the neighbourhood score (Sn(u, v)) is the number of edges between u and v (that is

0, 1, or 2).

GO starts from the vertex with the maximum degree and uses a sliding window to

find the vertex with maximum score (between neighbours of recently assigned IDs) to

assign the next ID.

We selected GO because of its special algorithm that concentrates on increasing tem-

poral reuse instead of identifying communities. We used commit 7ccdfe9 of GOrder3

with its default window size (5). This is a single-threaded implementation for graphs

with |E| < 231.

Rabbit-Order (RO) [6] develops communities using neighbours of vertices. By starting

from the vertices with the lowest degree, it searches for the neighbour with maximum

“gain” that can be reached through merging. The gain function is defined as:

∆Qu,v = 2
(wuv

2|V| −
|Nu||Nv|
(2|V|)2

)
,

where wuv is the weight of edge between u and v and Nu is the degree of u. The vertex

and its max-gain neighbour are temporarily merged for the purposes of reordering and

the weight of the new vertex is calculated as 2wuv + wuu + wvv. After merging two

vertices, the weights of their common edges are also added up. The initial weights of a

vertex and an edge are 0 and 1, respectively.

The merging process continues while there is a neighbour u of v with ∆Qu,v > 0;

otherwise, the vertex v is added to the top level set which contains the root of commu-

nities. Finally, a parallel Depth First Search (DFS) is performed starting from members

of the top level set to assign new IDs.
2http://datalab.snu.ac.kr/~ukang/SlashBurn-1.0.zip
3https://github.com/datourat/Gorder

http://datalab.snu.ac.kr/~ukang/SlashBurn-1.0.zip
https://github.com/datourat/Gorder

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 31

Dataset Pre-processing Time (Seconds) Memory Footprint (GigaBytes)

SlashBurn GOrder RabbitOrder SlashBurn GOrder RabbitOrder

WebB 232 327 37 35 19 62

TwtrMpi 46 5,697 67 29 23 88

Frndstr 75 4,894 139 38 30 108

SK 90 588 35 36 31 117

WbCc 81 6,587 72 46 33 122

UKDls 810 67 78 236

UU 647 80 105 329

UKDmn 1,040 69 116 394

ClWb9 591 407

Table 3.1: [Real execution] Preprocessing overheads - Blank cells indicate failed attempts

We selected RO as it is the fastest community detection RA. We used commit f67a79e

of Rabbit-Order4. RO produces different permutations in different executions and we

observed that results may vary up to ±5 %. For each graph, one output of RO has been

stored and used for all experiments in this chapter. RO did not complete its execution

for the ClWb9 graph because of an “out of memory” error.

3.2.5 Preprocessing Overheads

Table 3.1 shows the preprocessing time (in Seconds) and memory footprint (in Giga-

Bytes) of the RAs.

3.3 Locality Types and Metrics

In this section, we introduce different locality types; then, we introduce N2N AID degree

distribution and cache miss rate degree distribution that helps to measure different

locality types.

3.3.1 Locality Types

Considering random memory accesses in Line 4 of Algorithm 1, the following patterns

of reuse of vertex data are identified.

• Type I: The consecutive neighbours of vertex v are close so that accesses to the

neighbours benefit from spatial reuse. This means that proximity of IDs of consec-

4https://github.com/araij/rabbit_order

https://github.com/araij/rabbit_order

32 3.3. Locality Types and Metrics

utive neighbours results in placing their data on the same cache line that provides

reuse in accessing data of neighbours.

• Type II: Subsequently processed vertices v and v + δ have common neighbours

whose data is temporally reused. If vertex u is a neighbour of v and v + δ, then

proximity of IDs allows cache to reuse the data of u in processing v + δ after using

it for processing v.

• Type III: Subsequently processed vertices v and v + δ have distinct neighbours,

but the IDs of the neighbours are close together and causes spatio-temporal reuse.

If u is a neighbour of v, and u + θ is a neighbour of v + δ, and θ is small enough

that data of u and u + θ are on the same cache line, then proximity of v and v + δ

results in reuse of this cache line.

• Types IV and V: These types happen for reusing a cache line that has been loaded

by another thread into a shared cache: a cache line contains data of vertices u and

u+ θ and is (re)used in semi-concurrent processing of distinct vertices by different

threads. It is type IV, if θ = 0 (similar to type II); otherwise, it is type V (similar to

type III).

Types IV and V are not directly targeted by RAs as they mainly depend on (1) ver-

tex partitioning algorithm and scheduling method of the runtime environment, and

(2) availability of the shared caches in the processor architecture. Types I, II and III are

determined by the graph and are controlled by RAs.

GO aims for improving type II and III by selecting the vertex with maximum gain

based on current contents of cache. RO targets type I and tries to improve clustering

based on neighbourhood of vertices that also results in type III. SB aims to improve

locality types I and III by identifying communities, and types II and III by assigning

consecutive IDs to hubs.

3.3.2 Neighbour to Neighbour Average ID Distance

Community detection algorithms such as RO try to form clusters based on the neigh-

bourhood of vertices. By assigning consecutive IDs to vertices in the same community,

they aim to increase reuse of neighbours’ data. To investigate how an RA succeeds

in bringing neighbours close to each other (spatial locality, type I), we calculate the

distance between neighbours.

Using Nv,i to show the ID of the i-th neighbour of vertex v (with sorted neighbours

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 33

list in ascending order), Neighbour to Neighbour Average ID Distance (AID) is defined

as:

AIDv =

i=|Nv|

∑
i=2

|Nv,i − Nv,i−1|

|Nv|

When an RA assigns close IDs to neighbours of a vertex, the difference between

IDs of consecutive neighbours is reduced and AID is reduced. In this way, lower AID

values, generally, relate to better spatial locality. For a SpMV in the pull direction, AID

considers only the in-neighbours of a vertex.

We study the effects of RO on spatial locality of different vertex classes, using AID

degree distribution in Section 3.4.3 (Figure 3.3). AID degree distribution is computed in

O(|E|) time and O(max-degree) space complexity.

It is useful to compare N2N AID to “average gap profile” [11] that calculates average

of the differences between the IDs of two endpoints of each edge to provide a summary

of the spatial locality of the graph. The neighbours of a vertex do not need to be close to

the main vertex as they should be only close to each other to maximize spatial locality.

It is important to note that AID measures clustering efficacy of an RA and is in-

dependent of the architecture. In this way, AID is not a deterministic spatial locality

metric. As an example, assume a vertex has neighbours with IDs 1600, 3200, and 6400.

If an RA changes the IDs of neighbours to 400, 800, and 1600, AID is reduced but the

spatial locality is not changed (as the neighbours are still on different cache lines).

3.3.3 Cache Miss Rate Degree Distribution

In order to collect detailed information about RAs, we collect cache miss rates based on

the degree of vertices. This shows how RAs affect locality types II and III of different

vertex classes. We use simulation for this purpose; however, detailed simulation of

processor and memory hierarchy (in simulators like Gem5 [20]) is time-consuming for

large graphs.

Since (i) graph analytics are memory intensive (as an example, in Algorithm 1 we

have one add as computation in Line 4), and (ii) computation instructions are much

faster than memory instructions, we ignore simulating execution of instructions except

time-consuming memory instructions (load and store instructions) to make the simula-

tion process efficient and fast.

34 3.4. Locality Analysis of RAs

We designed a trace-based simulator based on the cache simulator of SimpleScalar5 [33]

and equipped it with an accurate implementation of the dueling BRRIP and SRRIP [83]

cache replacement policies. We use this implementation for level 3 cache shared be-

tween the cores of each NUMA node and for the same configuration (number of sets

and ways of associativity) as the real CPU, our SkyLakeX machine (Appendix A). We

instrumented Algorithm 1 at source code level to call the simulator for every load/store.

We performed the parallel simulation in two phases: (1) logging memory accesses

during graph processing by each of the parallel threads, and (2) dividing execution

duration between threads where for each interval a thread simulates all logged accesses

by parallel threads in a round robin way.

Figure 3.1 shows the degree distribution of cache miss rate for RAs. We will interpret

these results in Section 3.4.

For datasets used in this chapter the average simulation time of one SpMV iteration

is 151 seconds. Compared to the real machine, the total cache misses of the simulation

has an average 15% error, and the average relative error (for comparing misses between

two RAs) is 1.4%. This means that differences greater than 1.4% between miss rates of

relabeled versions of a graph in Figure 3.1 are valid (presuming all degrees experience

the same rate of error).

3.4 Locality Analysis of RAs

3.4.1 SlashBurn

SB has been designed for power-law graphs: “We propose to envision graphs as a collection of

hubs connecting spokes, with super-hubs connecting the hubs, and so on, recursively” [108]. The

main idea is to iteratively remove hubs of power-law graphs; however, the practicality

of this method depends on (i) whether power-law graphs are destroyed recursively and

also (ii) if hubs are the main communication points of the graph.

To assess the first hypothesis, we depict the degree distribution of GCC for different

iterations of SB in Figure 3.2. Over different iterations of SB, the degree distribu-

tion of the GCC does not maintain the power-law property. After a few iterations,

the remaining network shows an almost-uniform degree distribution with low degrees.

Further iterations of the SB separate these LDV from their neighbours in what are per-

5http://simplescalar.com/

http://simplescalar.com/

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 35

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2 5

5

10

15

20

25

30

35

40
Initial

SlashBurn

GOrder

RabbitOrder

Twitter MPI

Degree

M
is

s
R

at
e

P
er

ce
n

ta
g

e

1 2 5 10 2 5 100 2 5 1000 2

15

20

25

30

35

40

Initial

SlashBurn

GOrder

RabbitOrder

Friendster

Degree

M
is

s
R

at
e

P
er

ce
n

ta
g

e

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2 5 1M 2

10

15

20

25

30

35

Initial

SlashBurn

GOrder

RabbitOrder

Web-CC12

Degree

M
is

s
R

at
e

P
er

ce
n

ta
g

e

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2 5 1M 2 5

4

6

8

10

12

14
Initial

SlashBurn

RabbitOrder

UK-Union

Degree

M
is

s
R

at
e

P
er

ce
n

ta
g

e

Figure 3.1: [Simulation] Cache miss rate degree distribution

36 3.4. Locality Analysis of RAs

0 50 100 150 200 250 300

Initial State
After Iteration 1
After Iteration 2
After Iteration 4
After Iteration 8
After Iteration 16

TwtrMpi

Degree

F
re

qu
en

cy
 /

M
ax

-F
re

qu
en

cy
 (

lo
g

sc
al

e)

1

Initial State

After Iteration 1

After Iteration 2

After
Iteration 4

After
 Iteration 8

0 50 100 150 200 250 300

Initial State
After Iteration 1
After Iteration 2
After Iteration 4
After Iteration 8
After Iteration 16

Web-CC12

Degree

F
re

qu
en

cy
 /

M
ax

-F
re

qu
en

cy
 (

lo
g

sc
al

e)

1

Initial State

After Iteration 1

After Iteration 2
After

Iteration 4

After
 Iteration 8

Figure 3.2: [Real execution] Degree distribution of initial graph and GCC after SB itera-

tions

ceived as different communities. As a result, neighbours are assigned widely distinct

IDs that reduces locality types I and III.

To evaluate the second hypothesis, at least for some graphs like protein-protein in-

teraction networks, it has been shown that flow bottlenecks (vertices that frequently

appear in communication paths between different vertices, i.e., with greatest centrality)

may not be the same vertices as hubs [170]. This shows that flow bottlenecks are better

candidates to produce communities by being removed from the graph.

SB is partly similar to degree-ordering as a number of HDV receive initial consec-

utive IDs that increases temporal reuse (types II and III) in accessing data of out-hubs.

SB improves locality types IV and V (Section 3.4.6).

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 37

3.4.2 GOrder

GO tries to optimize locality by maximising reuse of the current content of the cache

(types II and III). It uses a sliding window and searches for a neighbour with the greatest

score (Section 3.2.4). For a HDV in the sliding window the sibling score is dominant and

the vertex with more common in-neighbours will have more chance to be selected. For

a LDV in the sliding window the neighbourhood score is dominant.

GO considers common neighbours with only a limited number of already-placed

vertices (a window size of the past 5 vertices). There are numerous LDV in power-law

graphs and many of them appear equally “close” to the 5 last labeled vertices. As such,

GOrder cannot properly distinguish which LDV to select. This is reflected in the cache

miss rate (Figure 3.1) where GOrder decreases cache miss rate well on HDV but cannot

perform well for LDV.

To further investigate GOrder’s strategy towards HDV, we use cache simulation to

count the number of misses occurring in accessing data of HDV. Table 3.2 shows that

GO and SB have the lowest reloads of HDV. For Twitter MPI and Friendster SB has

lower reloads of vertices with degree > 2000; but, for vertices with degree > 20, GO

has the lower reloads. As such, GOrder increases the number of reloads of HDV to

provide space in cache for LDV (to reduce its reloads). The latter are exponentially

more frequent in power-law graphs.

Dataset Min. Degree Initial SlashBurn GOrder Rabbit-Order

WebB 2,000 10 21 2 10

TwtrMpi 2,000 8 0.4 4 11

TwtrMpi 20 345 260 230 377

Frndstr 2,000 2 0.04 1 3

Frndstr 20 1,177 1,110 818 1,060

SK 100 8 26 7 11

Table 3.2: [Simulation] Total number of misses (in millions) for accessing data of vertices

with degree > Min. Degree

As we explained in Section 3.4.1, partial degree-ordering in SB keeps data of out-

hubs in cache; but, the score function of GO selects vertices with more temporal reuse

based on the current contents of the cache and prevents filling cache with HDV. In other

words, GO allocates cache space to vertices with lower degree but with more temporal

38 3.4. Locality Analysis of RAs

reuse in short durations of processing and in this way, GOrder reduces the presence of

HDV in the cache to increase the total reuse. As a consequence, GO fills the cache with

vertices of different degrees (but with more temporal reuse) rather than dedicating the

cache capacity to vertices with the highest degree.

3.4.3 Rabbit-Order

RO builds communities bottom-up and starts from low degree vertices and merges

neighbouring vertices while trying to maximise the gain function (Section 3.2.4). This

results in a set of trees that reflect the communities and are used in the second phase to

assign IDs by DFS traversal of each tree.

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2 5

0

2M

4M

6M

8M

10M

12M

14M

Initial
RabbitOrder

Twitter MPI

Degree

A
ID

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2 5 1M 2 5

0

0.2M

0.4M

0.6M

0.8M

1M

1.2M

Initial
RabbitOrder

UK-Union

Degree

A
ID

Figure 3.3: [Calculation] AID degree distribution

We use degree distribution of AID (Section 3.3.2) to assess changes made by RO in

spatial locality. As Figures 3.1 and 3.3 show, Rabbit-Order reduces AID of LDV and

improves their spatial locality by using DFS in the second phase that assigns spatially

close IDs between neighbouring LDV in clusters. However, as degree of vertices is

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 39

increased, DFS cannot assign consecutive IDs to the neighbours (because each neighbour

has itself a number of neighbours). So, AID and cache miss rate of Rabbit-Order are

increased for HDV.

3.4.4 Observation on Hubs

Figure 3.1 shows that all RAs incur higher miss rates for hub vertices. Processing an

in-hub requires accessing data of several in-neighbours, and only a fraction of that data

can be held in cache in any one moment. For other ones, memory accesses are required.

While RAs change the order of edges of hubs, they cannot change the topology of a

graph. So, locality of hubs is not improved by RAs as much as other vertices.

Locality of hubs is important as they involve a large fraction of the edges (therefore, a

large fraction of traversal time) and this observation demonstrates that hubs of skewed-

degree graphs suffer from a structural problem in relation to locality that cannot be

solved by RAs.

Moreover, since the data of subsequent neighbours of an in-hub should be read from

memory and be placed in cache, the formerly read neighbour’s data is flushed by the

newer ones before that in-hub is processed completely. This does not allow the data to

have an opportunity to be used in processing other vertices. In this way, reuse of cache

contents is reduced as a side effect of processing in-hubs.

3.4.5 Real Execution Performance Metrics

Table 3.3 shows the real execution of SpMV. The number of misses and idle time are

averaged between threads.

Last level (L3) cache misses show the number of memory accesses that are not sat-

isfied by caches and are sent to main memory. The number of L3 misses is the main

locality metric. Table 3.3 shows that SB may destroy locality and, therefore, increase

the execution time. GO reduces L3 misses and execution time of social networks. RO

reduces the cache misses and the execution times of web graphs.

DTLB misses is the number of misses that occur in looking up translations of virtual

addresses to physical addresses. While a DTLB miss results in (possibly multiple) mem-

ory accesses, DTLB misses are not usually a bottleneck as the total size of huge memory

pages that are cached by TLB is much greater than the aggregate CPU cache capacity.

DTLB misses show locality of RA at larger granularity, i.e., at longer reuse distances

40 3.4. Locality Analysis of RAs

Dataset Time (MilliSeconds) Idle (%) L3 Misses (Millions) DTLB Misses (Kilos)

Bl SB GO RO Bl SB GO RO Bl SB GO RO Bl SB GO RO

WebB 90 145 89 79 1.5 2.1 2.2 2.3 4.3 6.8 4.3 3.7 0.6 1.7 1.8 1.6

TwtrMpi 354 339 299 366 1.8 2 1.1 1.7 15.7 14.2 12.6 16.3 4.7 2.3 3.1 3.1

Frndstr 771 761 578 667 1.2 1.5 1.4 1.2 40.8 39.2 29.1 34.9 9.3 9.4 7.1 7.6

SK 117 168 109 109 8.2 1.5 1.6 4.1 5.7 8.8 5.5 5.3 0.8 1.4 0.5 0.6

WbCc 438 414 311 297 1.9 2.3 2.3 3.1 20.5 19.3 13.5 12.6 8.6 6.8 6.9 4.5

UKDls 194 317 180 1.9 1.9 2.5 10.1 16.5 9.3 1.8 4.4 1.4

UU 282 486 285 1.9 1.9 6 14.6 24.9 13.8 2.8 7.8 2.4

UKDmn 297 459 281 1.4 2.1 2.7 15.7 23.5 14.7 4.4 5.6 2.7

ClWb9 2,221 2,811 1.3 1.4 100.9 139.3 39M 181

Table 3.3: [Real execution] SpMV execution results (Bl: Baseline without relabeling)

than L3 misses.

RO interleaves HDV between LDV during the ID assignment phase. By applying

DFS on independent clusters whose data are placed in a few memory pages, Rabbit-

Order minimizes intra-cluster edges that reduces DTLB misses.

Idle time shows the average percentage of execution time that each thread is idle.

Comparison between RO and the baseline for UU in Table 3.3 shows that RO reduces

L3 misses, but the execution time is not better than the baseline. Increased idle time is

one of the reasons and shows that improving locality does not necessarily translate to

improved performance.

Since RAs do not change the locality of consecutive vertices (that form partitions

that are assigned to or stolen by threads) evenly, as Table 3.3 shows, improving locality

of a graph dataset by an RA may increase the idle time. Increased idle time indicates

poorer load balance and opens further opportunities for optimization, e.g., it may be

possible to further improve load balance by increasing the number of partitions.

3.4.6 How Much of Cache Capacity Is “Effectively” Used?

We introduce the Effective Cache Size (ECS) as “the percentage of cache capacity ded-

icated to caching randomly accessed data”. In the pull direction SpMV (Algorithm 1),

this measures the proportion of cache used to cache Di. The ECS is important in graph

processing as cache lines of topology data are sequentially accessed and have a limited

reuse. So, there is no merit in keeping topology data in cache; but, randomly accessed

vertex data are reused and dedicating more cache space to them is beneficial to improve

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 41

performance.

We use functional (timing-less) simulation to estimate ECS. We periodically scan the

cache contents during execution to identify cache lines containing old data of vertices.

Table 3.4 shows the results for the baseline (without relabeling) and for different rela-

beling algorithms. Table 3.4 shows that RAs do not utilize all capacity of the cache to

satisfy random memory accesses.

Dataset Baseline SlashBurn GOrder Rabbit-Order

WebB 27.4 50.9 26.2 20.4

TwtrMpi 68.3 65.5 63.4 68.9

Frndstr 77.5 76.9 75.2 76.7

SK 37.3 55.2 37.3 42.9

WbCc 64.1 64.9 57.5 58.9

UKDls 22.0 48.1 20.6

UU 29.7 52.4 30.6

UKDmn 18.2 41.5 18.3

Table 3.4: [Simulation] Average effective cache size (%)

Moreover, SB usually has the greatest ECS while it makes the most cache misses (Fig-

ure 3.1 and Table 3.3). In other words, by reducing locality, the effective cache size is

increased. To explain this, we need to review the arrangement of vertices in the SB

algorithm. By separating LDV from their parents in the last iterations of SB, the locality

types I and III of LDV are reduced. This means more memory requests are performed

and cache lines with lower reuse are evicted faster (as a greater number of new cache

lines are fetched from the main memory and should be placed somewhere in the cache).

Therefore, cache lines of topology data are removed faster from cache and the number

of cache lines of vertex data is increased.

To have a better illustration, we compare this status to when all random memory

accesses are clustered on a small number of vertex data because of better locality. So, a

smaller portion of cache capacity is dedicated to those frequently accessed vertices and

ECS is reduced. Comparison of L3 misses in Table 3.3 and ECS in Table 3.4 also shows

that the RA with the best locality for a dataset, has the lowest ECS.

This observation has two important repercussions for hardware design: (i) the full

cache capacity remains unused in the current state of the art. So, improving locality will

mean caches are even more over-sized, and (ii) in order to optimize a multi-level caching

system, we need to have new and different cache inclusion policies for memory access

42 3.5. Locality Analysis of Graph Datasets

types: the topology data (that is prefetched) is required to be cached only in the highest

level, but the vertex data benefits from multi-level caching, especially from a shared

last level cache where only vertex data cache lines are stored and accessed by multiple

processors.

On the other hand, this shows that we need software algorithms that are capable

of making good use of all capacity of the cache.

Increasing ECS in SB results in filling the cache with a large number of vertex data

and locality types IV and V are improved in processing numerous neighbours of

hubs. So, as Figure 3.1 shows, the miss rate in processing hubs is reduced by Slash-

Burn.

3.5 Locality Analysis of Graph Datasets

This section investigates the structure of different types of real-world graph datasets and

their effects on RAs.

3.5.1 Web Graphs vs. Social Networks

Table 3.3 shows that the RA that performs well for social networks is GO and for web

graphs it is RO. Section 3.4.2 explains that GO improves locality of HDV and Sec-

tion 3.4.3 demonstrates how RO improves locality of LDV. So, HDV of social networks

and LDV of web graphs are the main sources of improving locality by GO and RO,

respectively.

To explain this, we compare the connection between HDV in social networks and

web graphs by defining the Asymmetricity of a vertex as the fraction of in-neighbours

that are not out-neighbours:

Asymmetricity(v) =
|{(u, v) ∈ E|(v, u) /∈ E}|

|{(u, v) ∈ E}|

Figure 3.4 compares the degree distribution of asymmetricity of TwtrMpi (a social

network) to UK-Union (a web graph). It shows that TwtrMpi has highly symmetric ver-

tices with high in-degrees. In other words, in-hubs are almost symmetric in social

networks (in-hubs are out-hubs), while web graphs do not have symmetric in-hubs.

For further investigation, we analyze the connection between vertices by defining

degree classes: "1-10", "10-100", "100-1K", Figure 3.5 represents the degree range de-

composition as the correlation between the degrees of neighbouring vertices: all edges

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 43

1 2 5 10 2 5 100 2 510002 5 10k 2 5100k2 5 1M 2 5
0

20

40

60

80

100

Twitter-MPI
UK-Union

Degree

A
sy

m
m

et
ri

ci
ty

 P
er

ce
nt

ag
e

Twitter-MPI

UK-Union

Figure 3.4: [Calculation] Asymmetricity degree distribution

to vertices in a degree class are binned based on the degree class of their source vertex.

As an example, vertices with in-degree between 10-100 in TwtrMpi receive 29% of their

incoming edges from vertices with out-degree 100K-1M.

For vertices with degree greater than 1K in TwtrMpi, HDV form more than half of

the neighbours while, in SK-Domain LDV are dominant in forming neighbours of HDV.

This shows that HDV have close connection to each other in social networks. On the

other hand, LDV are the main constituents of all degree classes of the web graphs.

For this tight connection of HDV in social networks, RO cannot form independent

clusters (with relatively small number of intra-cluster edges) and therefore RO cannot

improve locality of the HDV. Table 3.2 also shows that RO has the most reloads, but

GO manages hubs based on their temporal reuse (Section 3.2.4). In this way, GOrder

optimizes reuse of a large number of fully connected HDV of social networks that

cannot be kept simultaneously in the cache by giving priority to temporal reuse of

vertices with lower degree.

On the other hand, web graphs do not have a tight connection between HDV and

the important factor for locality is spatial locality between low-degree neighbours. As a

result, Rabbit-Order efficiently groups LDV to reduce AID and improves their locality

(Figures 3.1 and 3.3).

3.5.2 Push Locality vs. Pull Locality

Section 3.2.1 explained push and pull traversal directions. In this section we explain

how different datasets benefit from a special traversal direction.

Push and pull traversals differ in two aspects: (1) using CSC in pull and CSR in push,

44 3.5. Locality Analysis of Graph Datasets

15

4

9 9

1

14

26

17

31

20

9

48

12 13

25 26
33

24

11 11

17

33

49

13

9 9
8

10

8

12

29

6

1

14
17

3

1-10 10-100 100-1K 1K-10K 10K-100K 100K-1M
1

2

4

8

16

32

64

1-10 10-100 100-1K 1K-10K 10K-100K 100K-1M 1M-10M

Twitter-MPI

Degree Range

10

2
2

1 1

2

6

71 66 60 56

74
87

77

18

31
38

33

25

11

17

1

9

1-10 10-100 100-1K 1K-10K 10K-100K 100K-1M 1M-10M
1

2

4

8

16

32

64

1-10 10-100 100-1K 1K-10K 10K-100K 100K-1M 1M-10M

SK-Domain

Degree Range

Figure 3.5: [Calculation] Degree range decomposition of neighbours of vertices (in per-

cent)

and (2) reading data of vertices in pull and writing it in push. So, the comparison of

push and pull traversals should be performed in two steps: (1) investigating the impact

of CSC and CSR formats of the graph by considering the same operation (e.g. read) for

both formats (instead of read in CSC and write in CSR), and (2) identifying how read

and write instructions affect the CSC and CSR traversals.

The second step depends on the analytic algorithm. So, we concentrate on the first

step to understand the impacts of different real-world graphs with skewed degree distri-

bution on locality of push and pull traversals. Table 3.5 compares CSC and CSR traver-

sals for the read operation, i.e., each vertex makes a sum of data of its in-neighbours

(in CSC traversal) and its out-neighbours (in CSR traversal). It shows that there is a

fundamental difference: web graphs have faster CSR traversal, but CSC traversal is

faster for social networks.

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 45

Dataset L3 Misses (M) Traversal Time (ms)

CSC CSR CSC CSR

WebB 4.3 3.8 90 81

TwtrMpi 15,7 21.7 354 439

SK 5.7 4.6 117 88

UKDls 10.1 9.3 194 177

ClWb9 100.9 96.5 2,221 2,129

Table 3.5: [Real execution] CSC vs. CSR read traversals

To explain the differences in CSR and CSC locality, we study the structure of power-

law graphs. The effect of hubs becomes more important in CSR and CSC traversals by

noting two points discussed in Section 3.5.1: (1) real-world graphs with skewed degree

distribution may have both in-hubs and out-hubs or only one of them, and (2) in-hubs

are not always out-hubs and vice versa. Moreover, in a pull traversal using CSC format,

out-hubs have a constructive effect on locality as their data is frequently accessed and

is reused in processing several vertices; but, in a push traversal using CSR in-hubs are

locality improving.

In order to explain locality of push and pull traversals, we consider the number

of edges where accessing their data results in a cache hit by keeping H hubs with

maximum degrees in the cache. This shows what fraction of the total edges (as an

indicator of total random memory accesses) are processed with no cache miss as a result

of keeping data of H hubs in the cache. Figure 3.6 illustrates the percentage of edges

covered by hubs while increasing the number of hubs for a social network (Twitter MPI)

and a web graph (SK-Domain).

Figure 3.6 shows that in a pull traversal of Twitter MPI, accesses to data of 44% of

the edges are hit in cache if we keep 100K out-hub data in the cache, but in a push

traversal only 23% of the edges are covered. For the SK-Domain it is vice versa: a pull

traversal covers only 4% of the edges for keeping 100K out-hub data in the cache while,

push traversal covers 64% of the edges. We found the same trend across all graphs of

the same types.

This shows that web graphs benefit from Push Locality as they have more powerful

in-hubs than out-hubs while, social networks benefit from Pull Locality because of

their more powerful out-hubs.

This difference between push and pull locality in social networks and web graphs

is reflected in the applicability of Direction-Optimizing BFS (DO-BFS) for social net-

46 3.6. Conclusion

1 10 100 1000 10k 100k 1M 10M
1
2
4
8

16
32
64

128

In-hubs
Out-hubs

Twitter-MPI

Number of Hubs

E
dg

es
%

In-hubs

Out-hubs

1 10 100 1000 10k 100k 1M 10M
1
2
4
8

16
32
64

128

In-hubs
Out-hubs

SK-Domain

Number of Hubs

E
dg

es
%

In-hubs

Out-hubs

Figure 3.6: [Calculation] Comparison of percentage of edges covered by in-hubs in CSR

traversal vs. out-hubs in CSC traversal

works [13]. DO-BFS uses push traversal for sparse iterations (where a small portion of

vertices are active) and uses pull traversal for dense iterations (where a large number of

vertices are active) as suggested by [151]; however, pull traversal is accelerated only for

graph datasets like social networks that have pull locality. For web graphs, on the other

hand, pull traversal is not supported by pull traversal as they have push locality.

3.6 Conclusion

In this chapter, we discussed key mechanisms that create or destroy locality. We intro-

duced a number of techniques to analyze graph reordering algorithms (RA) and their

effects on real-world graphs with skewed degree distribution. We introduced Local-

ity Types to enrich the terminology required for the discussion and we presented an

accurate graph-specific simulation technique that allowed us to investigate locality con-

ditional on the degree of vertices. We presented N2N AID as a spatial locality metric.

Using these techniques and metrics we studied three state-of-the-art locality optimiz-

ing RAs: SlashBurn, GOrder, and Rabbit-Order to identify how they affect locality of

Chapter 3. Analysis of Graph Relabeling Algorithms and Graph Datasets 47

different vertices.

We presented a structural analysis of real-world graphs that explains the contrasting

behaviours of datasets in relation to RAs. We identified a tight network of high-degree

vertices in social networks that suffers from temporal locality and we discussed the func-

tionality of GOrder that enhances temporal locality of these datasets. Analysis of web

graphs showed that low-degree vertices are the dominant class of vertices. As a result,

clustering low-degree vertices of web graphs by Rabbit-Order improves the spatial lo-

cality. We introduced Effective Cache Size as a metric of cache capacity utilization and

we see that improving locality by relabeling algorithm reduces the ECS.

We considered differences of the locality of push and pull traversals as consequences

of the structure of datasets and we showed that web graphs benefit from push locality

but, social networks benefit from pull locality. This reveals the necessity of consider-

ing the structure of datasets in selecting a suitable direction for processing and also in

interpreting results.

We observed that while hubs dedicate a large portion of edges of a graph, they expe-

rience low locality in graph traversal even after relabeling by different graph reordering

algorithms. This shows that different vertex classes in power-law graphs have differ-

ent performance and locality demands that are required to be considered in designing

high-performance algorithms.

Chapter 4

Uniform Memory Demands Strategy

4.1 Introduction

In Chapter 3, we analyzed the structure of graph datasets and we observed that rela-

beling algorithms cannot improve locality of hub vertices as much as other vertices and

this negatively affects the performance as hubs dedicate a great percentage of edges

(and execution time) to themselves.

We explained that graph relabeling has inherent limitations in improving locality as

it changes the order of vertices and deploying reordering algorithms cannot improve

locality for vertices with great degrees as cache cannot store the data of all their neigh-

bours. In other words, while reordering algorithms consider the structure of graphs to

renumber the vertices, the processing of vertices, still, ignores the structural differences

of vertex classes and applies the same structure-oblivious traversal for all vertices.

This shows that a unique traversal cannot satisfy contrasting memory demands

of different subgraphs, even in a simple graph traversal such as SpMV. We need to

differentiate between these subgraphs to prevent inefficient processing of subgraphs

by applying a traversal to the whole graph while it is only suitable for a particular

subgraph. In other words, we need to consider the implications of the graph structure

on graph traversals in order to satisfy the memory demands with the lowest overhead

as a result of deploying subgraph-optimized graph traversals.

To that end, in this chapter, we introduce the Uniform Memory Demands strategy

that acknowledges the diverse behaviours and demands of different vertex classes and

subgraphs instead of trying to find a general solution for the whole graph.

The Uniform Memory Demands strategy operates by categorizing memory be-

48

Chapter 4. Uniform Memory Demands Strategy 49

haviours of different subgraphs into groups, where, in each group, memory accesses

produce the same behaviour. Then, distinct data structures and algorithms are de-

signed for each vertex class/subgraph aiming to satisfy the uniform memory demands

in their vertex class/subgraph with the lowest overhead.

As the Uniform Memory Demands strategy concentrates on optimizing the perfor-

mance of graph algorithms, we consider the execution of graph algorithms in the com-

puting environment1. As a result, it is necessary to analyze the mutual implications of

(i) the computer architecture, (ii) the graph structure, and (iii) different graph algo-

rithms as solutions for a graph problem. This analysis helps us to identify or to design

the best graph algorithm for each subgraph that satisfies its memory behaviours with

the lowest overhead.

After identifying/designing the algorithms that best match the memory demands

of subgraphs/vertex classes, we may need to apply some changes in the graph struc-

ture. For example, we may need to separate edges of each subgraph and to store them

together in order to facilitate consecutive accesses to these edges. As a result, a restruc-

turing step (as a pre-processing step) may be required. Section 4.2 details the steps

of applying the Uniform Memory Demands strategy to design structure-aware graph

algorithms.

It is also helpful to compare the Uniform Memory Demands strategy to strategies

with similar concepts. The “Divide and Conquer” and “Dynamic Programming” strate-

gies try to find a solution for a problem by dividing the problem into smaller problems

that are easier to solve, or can be further divided, recursively. In contrast, the Uniform

Memory Demands strategy (i) states that a general solution is not capable of satisfy-

ing contrasting memory demands of different subgraphs/vertex classes in real-world

graphs and (ii) finds bespoke solutions with optimized performance for each subgraph.

From another perspective, in applying the Uniform Memory Demands strategy, it is

not the problem to find an algorithm as a solution for a graph problem. But, we are

curious about the formation of different subgraphs in the structure of the graph and

1As we detail in Section 8.2, this dependency of considering the execution of graph algorithms in com-

puting environments restricts the domain of the work and the direct applicability of the results to the

considered computing environments. However, it is the requirement of the work as memory behaviours

are created only in an execution environment and based on the architecture of the processor. Therefore,

this dependency is the virtue of the work and not a limitation. Moreover, while a study may consider a

restricted domain, it may result in more general falsifiable insights and techniques that are not limited to

that domain.

50 4.2. Analysis and Design Steps

how these subgraphs express different memory demands in different graph traversals

as solutions to a particular problem.

Although, as the Uniform Memory Demands strategy divides the input graph dataset

based on memory access demands in order to provide better performance, we can say

that the Uniform Memory Demands strategy applies the Divide and Conquer strategy

on the structure of the input dataset to find the best algorithm for each subgraph.

In the following sections of this chapter we explain the Uniform Memory Demands

strategy and its applications in more detail. In Section 4.2 we explain the steps of the

Uniform Memory Demands strategy for designing structure-aware graph algorithms.

In Section 4.3, we summarize the applications of the Uniform Memory Demands strat-

egy in designing structure-aware graph algorithms in the following chapters of this

thesis. We discuss further applications of the Uniform Memory Demands strategy in

Section 4.4.

4.2 Analysis and Design Steps

In designing algorithms based on the Uniform Memory Demands strategy, we consider

the following steps:

Step 1. Identifying Contrasting Demands & Behaviours

As the first step, we have to identify if it is observed/expected from different

vertex classes/subgraphs of power-law graphs to present contrasting behaviours.

We need to know the immediate results of these behaviours and how they affect

performance.

In this step, we answer these questions: What are the opposing behaviours of

vertex classes or subgraphs? What is the main bottleneck in the main algorithm

(poor memory locality, work inefficiency, or load imbalance)? What features of

the input datasets may change the performance of the main algorithm? Can we

extract or imagine vertex classes or subgraphs with different behaviours?

Analysis techniques, such as the ones introduced in Chapter 3, that evaluate a

graph for its smaller constituents (such as vertex classes, component, and sub-

graphs) are useful in this step.

Step 2. Considering Potential Solutions

Chapter 4. Uniform Memory Demands Strategy 51

In the second step, we consider different solutions for performing the main task.

We need to understand the effects of each solution and algorithm and its require-

ments.

The questions in this step are: What are the possible algorithms/traversals for

performing the main algorithm? What are the special features, advantages, and

disadvantages of each algorithm? Do particular conditions exist which maximize

the performance of an algorithm? What are the effects of these algorithms on

different vertex classes and/or subgraphs?

Step 3. Matching & Adjusting

Now, we have to specify which algorithm facilitates the best performance for each

vertex class/subgraph, and what changes are required to adjust the matched algo-

rithms in order to provide the same results as the main task.

In this step, we need to find answers for these questions: What traversal/algorithm

is the best for each vertex class/subgraph? What are the direct and subsidiary re-

sults of selecting a potential solution for a vertex class? How does it provide better

performance? Does it affect other metrics (like load balance, memory locality, and

work-efficiency)?

Step 4. Merging

In the last step, we have to specify if we need to perform other modifications to

make it possible that different algorithms of different vertex classes/subgraphs

work together.

Questions that we need to answer are: How to merge the distinct algorithms that

work on distinct vertex class/subgraph to deliver compatible results with the

main task? Is it necessary to modify results of any of the algorithms (that work

on a subgraph)? Is it required to apply changes into the structure of the graph

to allow algorithms to work independently? Can these distinct algorithms work

concurrently? If not, does sequential processing of subgraphs have side effects on

load-balance or performance?

52 4.3. Applications

4.3 Applications

In the rest of this thesis, we design the following three structure-aware graph algorithms

by deploying the Uniform Memory Demands strategy and the design steps explained

in Section 4.2:

• In Chapter 5, we consider different parallel counting sort algorithms applied to

a set of key-value pairs as input data with a skewed degree distribution for the

values. This condition happens for degree ordering of real-world graphs with

power-law degree distribution.

For parallel counting sort with shared variables between threads, atomic memory

accesses are the main cause of inefficiency. On the other hand, if we use private

variables, the size of memory and the overhead of merging are the causes of inef-

ficiency. This has made parallel counting sort practically slower than comparison-

based sorting algorithms.

By applying the Uniform Memory Demands strategy, we explain that shared vari-

ables are suitable for a subset of vertices and the private variables are the best

option for the rest of vertices. In this way, we introduce the SAPCo Sort algorithm

that optimizes performance in degree ordering of power-law graphs by consider-

ing the structure of the input dataset in order to reduce memory space requirement

while increasing work-efficiency.

• In Chapter 6, we consider the SpMV-based graph algorithms and we use the Uni-

form Memory Demands strategy to explain that the skewed degree distribution

of graphs prevents processing of hub edges from benefiting from CPU’s cache to

have better locality.

If we process the edges in the pull direction, the great degree of in-hubs does

not allow reuse of fetched data from memory. On the other hand, processing in

the push direction suffers from (i) the overhead of the atomic memory accesses or

(ii) the memory requirement and performance overhead of buffer merging.

By using the Uniform Memory Demands strategy, we design the iHTL algorithm

as a structure-aware SpMV. iHTL processes the incoming edges to in-hubs in the

push direction as these edges have a small number of destinations but numerous

sources. So, it is better to dedicate cache to the destinations (whose small numbers

allow them to be maintained in the cache) and benefit from reusing of destinations’

Chapter 4. Uniform Memory Demands Strategy 53

data as a result of the push-direction traversal. On the other hand, for incoming

edges to non-hubs, iHTL uses the pull direction that facilitates reuse of source

vertices of the edges.

• In Chapter 7, we analyze the memory accesses in the Triangle Counting (TC) algo-

rithm when running on real-world graphs with power-law degree distribution.

We use the Uniform Memory Demands strategy to show that the Forward al-

gorithm, as a structure-oblivious TC algorithm, results in (i) depriving non-hub

vertices from experiencing locality in accessing their neighbour lists, (ii) inefficient

usage of cache capacity, and (iii) fruitless searches.

Then, we introduce the LOTUS algorithm that optimizes locality by dividing the

graph into three subgraphs and by performing the triangle counting in 3 steps. In

each step, Lotus uses a compact data structure and a bespoke algorithm in order

to optimize memory locality.

4.4 Discussion

In this thesis, we explain the applications of the Uniform Memory Demands strategy for

designing graph algorithms with optimized performance in processing skewed-degree

graphs. However, this strategy is also useful for other graph structures with other de-

gree distributions as long as the degree distribution results in contrasting memory be-

haviours for different vertex classes or subgraphs.

The main ideas behind the Uniform Memory Demands strategy are to (i) recognize

contrasting memory behaviours produced by different subsets of the input datasets and

to (ii) categorize these demands in order to find the best solution for each category. So,

the Uniform Memory Demands strategy works based on two assumptions: (a) existence

of contrasting behaviours and (b) separation of these contrasting behaviours results in

satisfying these demands with lower overhead by designing and deploying specific data

structures and algorithms for each group of behaviours. The first assumption depends

on the structure of the graph dataset and the second assumption is, mainly, a data

and task management technique whose efficacy is identified in practice and the three

following chapters of this thesis act as proofs-of-concept.

In general, the applicability of the Uniform Memory Demands strategy, similar to

other strategies, is identified a posteriori, in practice, and on a per-case-basis consid-

54 4.4. Discussion

eration. To examine if the Uniform Memory Demands strategy works for a particular

problem, first, we need to see if contrasting memory behaviours can be a source of

inefficiency. Then, we should try to identify subsets of the input dataset (such as sub-

graphs/vertex classes) that show contrasting demands. In the next step, we have to

design/find algorithms that satisfy these contrasting demands with the lowest over-

head. After this final step, we can say the Unified Memory Demands strategy has been

successful for this problem.

The Uniform Memory Demands strategy can also be generalized to facilitate op-

timized usage of other resources. As an example, in communication-intensive applica-

tions in a distributed system, the structure of the input datasets can be used to categorize

the contrasting communications demands in order to satisfy them with lower commu-

nication overheads. In processing dynamic graphs [58, 139], the structure of the dataset

can be used to design bespoke updatable data structures and updating algorithms for

different subgraphs. In using Non-Volatile RAM (NVRAM) for graph processing, we

may find similar relationships between read-intensive and write-intensive behaviours to

the structure of the graph.

Chapter 5

SAPCo Sort: Structure-Aware

Parallel Counting Sort

5.1 Introduction

Degree ordering, or sorting vertices IDs by their degrees, is a basic tool in several graph

algorithms and frameworks [6, 38, 55, 102, 108, 159].

The input data is an array containing |V| elements, where, each element contains the

vertex ID (as key) and the vertex degree (as value). The output is similar to the input,

but vertices are sorted by their degrees in descending or ascending order. Without loss

of generality, we use the ascending order of degrees. In this way, the problem is to sort

n = |V| key-value pairs.

Several sorting algorithms with optimized complexities and implementations have

been introduced [9,30,42,56,63,93,128,140,148]; however, they are not well-adjusted for

real-world graphs with skewed degree distribution. The parallel algorithms that work

based on sample sort [63] and radix sort [140], move elements several times until they

are accommodated in their final places. On the other hand, counting sort [140] makes

advantage of writing elements directly in their final places and has a time complexity of

O(n) (while comparison-based sorting algorithms have a complexity of O(nlogn)); but

its parallelization is restricted by the range of values.

In this chapter, we deploy the Uniform Memory Demands strategy to analyze the

parallel counting sort algorithm and the behaviour of different vertex classes in this

algorithm. Then, we design the Structure-Aware Parallel Counting (SAPCo) Sort al-

gorithm. The evaluation of SAPCo in comparison to parallel counting sort shows that

55

56 5.2. Counting Sort

SAPCo is 33–71 times faster. In comparison to state-of-the-art sample sort and radix sort

algorithms, SAPCo is 1.7–4.0 times faster.

5.2 Counting Sort

5.2.1 Sequential Counting Sort

Algorithm 3 shows the sequential counting sort of the input array IN containing n key-

value pairs:

Step 1. Reading the input array and identifying the greatest value and assigning it

to max_val (Lines 1–4).

Step 2. The input array is read and a counters array of length max_val is used to

count the number of times different unique values occur in the input array

(Lines 5–7).

Step 3. To specify the insertion point of the first occurrence of unique values in

the output array, the prefix sum of counters is calculated and stored in the

Insertion Points (IP) array (Lines 8–10).

If value val appears r = countersval times in the input array, IP reserves

space for all r repetitions of v as IPval+1 = IPval + countersval .

Step 4. The input array is read again and values are placed in the output array

using IP: After reading an element with value val, it is written on an index

of the output array that is identified by the insertion point, IPval , and IPval is

incremented to be ready for the next val (Lines 11–13).

As the counters array is not needed after Step 2, its allocated memory is used for IP;

however, we use different names to mention distinct usages and contents.

5.2.2 Parallel Counting Sort

To parallelize counting sort, we consider parallelisation of each step. In Step 1, we need

to replicate the max_val variable over all threads and to reduce the replicates to identify

the max_val. To parallelize Steps 2-4, we need to identify the memory access types as

IP and counters arrays are modified by concurrent threads. As a result, we have two

options:

Chapter 5. SAPCo Sort: Structure-Aware Parallel Counting Sort 57

Algorithm 3: Sequential counting sort
Input: struct{key; val; } IN[n]
Output: struct{key; val; } OUT[n]

/* Step 1: Identifying the greatest value */
1 max_val = 0;
2 for (v ∈ IN) do
3 if v.val > max then
4 max_val = v.val
5 max_val++;

/* Step 2: Counting number of occurrences of different values */
6 counters[max_val] = {0};
7 for (v ∈ IN) do
8 countersv.val++;

/* Step 3: Specifying insertion points */
9 IP[max_val] = {0};

10 for (val = 1; val < max_val; val++) do
11 IPval = IPval−1 + countersval−1;

/* Step 4: Writing the output */
12 for (v ∈ IN) do
13 OUTIPv.val = v;
14 IPv.val++;

1. Shared IP: We divide the input array into partitions and threads read partitions

of the input array and atomically increment the shared counters (Step 2), then,

IP is calculated by parallel prefix sum (Step 3), and threads read the input array

and use atomic memory accesses to get an insertion point from the shared IP

(Step 4). To accelerate Step 2, per-thread counters can be used to avoid atomic

memory accesses. In this case, the counters should be merged by the end of

step.

2. Private IP: The input array is divided into partitions and per-partition counters

arrays are allocated. Then, partitions are read by threads and their private

counters are set (Step 2). A global counters array is accumulated by private

counters, and the global IP is identified by parallel prefix sum. The global IP

and the private counters of partitions are used to identify the private IP of each

partition (Step 3). The input array is read again and private IP are used to

identify the index required for writing to the output array (Step 4).

58 5.3. Algorithm Design

LDV HDV

Figure 5.1: LDV and HDV in ClueWeb12

5.3 Algorithm Design

5.3.1 Step 1: Identifying Contrasting Demands & Behaviours

In the first parallelization approach, shared IP, we need O(n) atomic memory accesses

during Step 4.

The applicability of the second approach, private IP, depends on the number of par-

titions (which is affected by the number of CPU cores and also affects the load balance)

and the range of values, max_val. For p partitions, the memory space complexity is

O(max_val · p). For a small max_val, p can be large enough to keep all processors busy;

however, that is not the case for degree-ordering of real-world graphs where max_val

may reach 95 million (Section 5.5). Moreover, Step 3 (merging private counters and cal-

culating private IP) has a time complexity of O(max_val · p) that is increased by both

max_val and p. In Step 2, also, we need to merge counters of t threads that results in

O(max_val · t) memory accesses.

We see that each of these approaches suffers from particular limitations. The shared

IP approach sacrifices performance in order to save memory space and the private IP

provides better performance while requesting much greater memory space.

5.3.2 Step 2: Considering Potential Solutions

Figure 5.1 is the same as Figure 2.1 and shows the Low-Degree Vertices (LDV) and

High-Degree Vertices (HDV). Since in power-law graphs, the number of LDV are expo-

Chapter 5. SAPCo Sort: Structure-Aware Parallel Counting Sort 59

nentially greater than HDV, in degree-ordering of these graphs, the input array has a

very small number of HDV and a huge number of LDV.

As a result, when traversing the input array, the very small indices of counters and

IP arrays (that correspond to LDV) are accessed frequently; but, the greater indices (that

correspond to HDV) are rarely accessed.

5.3.3 Step 3: Matching & Adjusting

Since HDV are rare and have a wide range of values, it is more efficient to save memory

space and time by allocating a shared memory array for HDV and using atomic memory

accesses to protect it from concurrent accesses of threads processing different partitions.

In other words, shared IP is the best match for HDV. Here, we take advantage of

lower memory space requirement by paying the cost of atomic memory accesses for

HDV, but these are only a small percentage of the total memory accesses. The “Cu-

mulative Frequency” plot in Figure 5.1 shows that less than 1% of vertices are HDV in

the ClueWeb12 graph; therefore, less than 1% of memory accesses will be protected by

atomic accesses.

In contrast, LDV are frequent and their corresponding indices that are accessed in

the counters and IP arrays are confined to a short range. So, it is more efficient to deploy

private IP for LDV that assigns per-partition private memory for IP arrays to accelerate

their accesses that form almost all of the memory accesses (more than 99% in Figure 5.1).

On the other hand, by limiting the range of values to LDV, we avoid high memory space

consumption of private IP approach.

5.3.4 Step 4: Merging

We explained that the private IP is the best match for LDV and the shared IP is the best

one for HDV. In order to deploy both these algorithms, we need to specify a threshold

between LDV and HDV.

We use tsld = min(1000, 0.5 ∗ max_val) as the threshold between HDV and LDV.

We control the size of total memory space by using 1000 as the maximum value of this

threshold that also acts as a suitable border between HDV and LDV in our graphs. The

0.5 ∗ max_val prevents assigning the total range of values for per-partition IP arrays

when range of values is small, i.e., max_val < 2000.

By using this threshold we limit atomic memory accesses to HDV to prevent sacrific-

60 5.4. SAPCo Sort Algorithm

ing performance. On the other hand, we assign private memory for LDV that form most

of the memory accesses. In this way, we limit the replicated private memory space and

overheads of aggregating counters and disseminating IP to only tsld (and not max_val)

indices.

5.4 SAPCo Sort Algorithm

Algorithm 4 shows the SAPCo sort. In this algorithm, we call degree of vertices as their

values.

Step 1. In Lines 1–9, we identify the maximum value (i.e., maximum degree) of the

input and we assign a private counters (pcounters) array of size tsld for each partition.

We also create a global counters (gcounters) array of size max_val.

Step 2. In Lines 10–15, threads process elements in each partition of the input array.

For an element with value val, if val < tsld, pcountersval of the partition is incremented;

otherwise, gcountersval is atomically incremented.

Step 3. In Lines 16–19, we merge pcounters of different partitions into the gcounters.

Then, by applying parallel prefix sum on the gcounters, the Global Insertion Points

(GIP) array is identified. By using GIP and pcounters, Private Insertion Points (PIP)

arrays of LDV in different partitions are identified (Lines 21-25).

Step 4. In Lines 26–32, the final pass over partitions of the input array is performed

by threads. When reading a value val, if val is a LDV, PIPval of the partition identifies

the insertion point (ip) in the output and PIPval is incremented. If val is a HDV, the

GIPval identifies the insertion point in the output array and is atomically increased by

one.

5.5 Evaluation

We use the SkyLakeX-2 machine (Appendix A) to evaluate SAPCo in comparison to

(i) counting sort with shared IP, (ii) counting sort with private IP, (iii) IPS2Ra radix sort1

(commit 18795bb) [9], and (iv) IPS4o sample sort2 (commit d7a74ab) [9].

1https://github.com/ips4o/ips2ra
2https://github.com/ips4o/ips4o

https://github.com/ips4o/ips2ra
https://github.com/ips4o/ips4o

Chapter 5. SAPCo Sort: Structure-Aware Parallel Counting Sort 61

Algorithm 4: SAPCo Sort
Input: struct{key; val; } IN[n]
Output: struct{key; val; } OUT[n]

/* Step 1: Identifying the greatest value */
1 max_val = 0;
2 par_for (v ∈ IN)
3 if v.val > max then
4 max_val = v.val
5 max_val++;
6 tsld = min(1000, 0.5 ∗ max_val) ; // threshold between LDV and HDV
7 pc = 64 ∗ #threads ; // number of partitions
8 gcounters[max_val] = {0} ; // global counters
9 pcounters[pc][tsld] = {0} ; // private (per partition) counters

/* Step 2: Counting occurrence of different values */
10 par_for (p = 0; p < pc; p++)
11 for (v ∈ INp) do
12 if v.val < tsld then
13 pcountersp

v.val++ ; // LDV
14 else
15 atomic_inc(gcountersv.val) ; // HDV

/* Step 3: Specifying insertion points */
16 par_for (val = 0; val < tsld; val++)
17 for (p = 0; p < pc; p++) do
18 gcountersval += pcountersp

val ; // merging private counters
19 GIP = par_prefix_sum(gcounters) ; // global IP
20 PIP = pcounters ; // private (per partition) IP
21 par_for (val = 0; val < tsld; val++)
22 for (p = 0; p < pc; p++) do
23 tmp = pcountersp

val ;
24 PIPp

val = GIPval ;
25 GIPval += tmp;

/* Step 4: Writing the output */
26 par_for (p = 0; p < pc; p++)
27 for (v ∈ INp) do
28 if v.val < tsld then
29 ip = PIPp

v.val++ ; // LDV
30 else
31 ip = atomic_get_and_inc(GIPv.val) ; // HDV
32 OUTip = v;

62 5.5. Evaluation

Dataset |V| Max. Performance (Milliseconds)

(M) Degree Cnt. Shared Cnt. Private IPS2Ra IPS4o SAPCo

GBRd 7.7 7 463 5.0 9.9 10.2 5.0

USRd 23.9 8 1,334 10.9 25.6 22.5 11.0

WWik 2.1 1.14 M 119 573 12.6 4.3 4.8

LJ 5.2 15.0 K 210 19.2 10.0 6.4 5.5

LJGrp 7.5 1.05 M 315 799 23.1 9.8 8.9

Twtr10 21.3 422 K 1,130 166 55.9 21.4 18.7

Twtr 28.5 278 K 1,324 213 73.1 28.6 20.5

TwtrMpi 41.7 770 K 1,687 422 103 40.8 37.5

SK 50.6 8.56 M 2,286 6,120 130 50.1 33.8

Frndstr 65.6 3,615 2,765 39.4 122 65.0 35.7

WbCc 89.1 2.33 M 4,226 1,369 228 82.5 55.9

UKDmn 105.2 975 K 2,280 629 266 100 57.7

UKDls 109.5 1.26 M 4,649 984 276 109 56.7

WebB 118.1 816 K 5,591 783 296 117 54.4

UU 133.6 6.37 M 5,511 3,478 335 134 66.6

GSH 988.5 58.8 M 31,541 24,175 2,948 936 467

ClWb9 1,685 6.44 M 86,988 5,336 4,203 1,725 781

WDC14 1,725 45.7 M 87,792 27,643 5,744 1,732 679

WDC12 3,564 95.0 M 151,382 – 11,021 3,344 1,537

Table 5.1: Performance of sorting algorithms: counting sort with Shared IP (“Cnt.

Shared”) and Private IP (“Cnt. Private”), IPS2Ra (radix sort), IPS4o (sample sort), and

SAPCo - Failed attempts are shown by dash.

5.5.1 Performance Evaluation

Table 5.1 shows the numbers of vertices of graph (|V|) in millions (which specifies the

number of elements in the input array, n). Column 3 of Table 5.1, “Max. Degree”, shows

the maximum in-degree of graphs (which specifies the value of max_val in Section 5.4).

Table 5.1 shows that SAPCo is, on average, 1.7× faster than IPS4o, 4.0× faster than

IPS2Ra, 33.5× faster than counting sort with private IP, and 71.5× faster than counting

sort with a shared IP.

Chapter 5. SAPCo Sort: Structure-Aware Parallel Counting Sort 63

Dataset |V| Max. Memory Accesses HW Instructions

(M) Degree IPS2Ra IPS4o SAPCo IPS2Ra IPS4o SAPCo

GBRd 7.7 7 13.8 16.7 12.1 52.0 47.2 34.6

USRd 23.9 8 13.8 16.5 12.0 48.9 46.1 34.3

WWik 2.1 1.14 M 38.3 30.4 16.0 99.9 80.2 52.6

LJ 5.2 15.0 K 29.2 27.4 13.1 76.9 74.6 39.6

LJGrp 7.5 1.05 M 35.4 33.8 13.2 90.6 87.0 39.8

Twtr10 21.3 422 K 32.4 23.4 12.4 83.6 65.7 36.2

Twtr 28.5 278 K 34.6 29.3 12.3 87.7 76.7 35.6

TwtrMpi 41.7 770 K 30.9 28.3 12.3 81.9 75.2 35.7

SK 50.6 8.56 M 31.8 26.3 12.6 82.3 70.8 36.4

Frndstr 65.6 3,615 30.9 29.0 12.1 81.0 77.6 34.7

WbCc 89.1 2.33 M 32.6 25.5 12.2 83.6 69.5 35.2

UKDmn 105.2 975 K 37.4 28.9 12.1 92.9 76.9 34.6

UKDls 109.5 1.26 M 33.0 27.8 12.1 85.1 73.8 34.6

WebB 118.1 816 K 30.1 24.6 12.1 79.8 66.0 34.4

UU 133.6 6.37 M 35.3 31.7 12.2 89.3 81.1 34.8

GSH 988.5 58.8 M 37.1 32.0 12.2 94.7 82.4 34.5

ClWb9 1,685 6.44 M 28.7 25.1 12.1 78.6 66.6 34.4

WDC14 1,725 45.7 M 36.9 25.2 12.1 95.3 67.0 34.3

WDC12 3,564 95.0 M 43.4 30.7 12.1 106.5 79.3 34.3

Table 5.2: Comparison of memory accesses and hardware instructions. Values are di-

vided by the number of elements (|V|) - “Memory Accesses” are load and store instruc-

tions

5.5.2 Hardware Instructions and Memory Accesses

We compare memory accesses and hardware instructions in Table 5.1 that shows SAPCo,

on average, performs 12.6 memory accesses per vertex while, IPS4o requires 27.4 ac-

cesses. Moreover, SAPCo requires 37.1 hardware instructions per vertex, on average

while, IPS4o requires 72.8 instructions. This shows that SAPCo facilitates better work-

efficiency.

5.6 Conclusion and Further Applications

In this chapter, we used the Uniform Memory Demands strategy to distinguish differ-

ent memory demands in parallel counting sort, and to introduce the SAPCo sort that

64 5.6. Conclusion and Further Applications

uses per thread private data structures for low-degree vertices while using shared data

structures for high degree vertices.

The structure-aware design of SAPCo provides 33–71 times speedup in comparison

to parallel counting sort. Moreover, SAPCo is 1.7–4.0 times faster than comparison-

based sorting algorithm that makes SAPCo the first parallel counting sort that is practi-

cally faster than comparison-based sorting algorithms, however, in a special application

domain (having skewed frequency in the input data).

The SAPCo Sort algorithm can be used in identifying k vertices with maximum

degrees (in algorithms such as iHTL and Lotus which are introduced in Chapter 6 and

Chapter 7, respectively). In this case, we do not need to count the LDV and we do not

need to assign memory for the pcounters (i.e., we skip Lines 9, 13, 16–18, 21-25, and 29

in Algorithm 4). Similar changes can be applied to identify k vertices with minimum

degrees.

Chapter 6

iHTL: Exploiting in-Hub Temporal

Locality in SpMV

6.1 Introduction

In Chapter 3, we explained that SpMV-based graph processing (where all edges of the

graph are traversed in the pull direction) suffers from poor locality in processing hubs.

We also identified that locality-optimizing relabeling algorithms cannot improve locality

of hubs.

In this chapter, we use the Uniform Memory Demands strategy to design the iHTL

algorithm that identifies different memory demands in a power-law graph and deploys

distinct traversal directions for each subgraph. The iHTL algorithm extracts subgraphs

containing incoming edges to in-hubs and processes them in the push direction. The

push direction traversal dedicates the cache to data of the destinations of the edges

in these subgraphs that are exponentially smaller in count than their sources. For the

remainder of the graph, iHTL uses the pull direction.

The evaluation of iHTL shows that iHTL is 1.5× - 2.4× faster than state-of-the-

art implementations of the pull traversal. More importantly, iHTL is 1.3× - 1.5× faster

than the pull traversal of state-of-the-art locality-optimizing reordering algorithms while

iHTL’s preprocessing is much faster than the preprocessing of the locality-optimizing

relabeling algorithms.

Section 6.2 explains the design of iHTL and the detailed iHTL algorithm is presented

in Section 6.3 that is followed by the evaluation of iHTL in Section 6.4. In Section 6.5, we

compare the iHTL to the cache blocking technique and Section 6.6 contains the future

65

66 6.2. Algorithm Design

work and application of the iHTL technique on other graph algorithms.

6.2 Algorithm Design

6.2.1 Step 1: Identifying Contrasting Demands & Behaviours

In Section 2.4.1, we explained that SpMV is used in several graph algorithms and is

performed in two directions: pull direction (traversing incoming edges to vertices, Al-

gorithm 1) or push direction (traversing outgoing edges to vertices, Algorithm 2). The

pull direction is faster as it does not require protecting data of vertices.

In Section 3.4.4, we explained that pull processing of in-hubs suffers from poor lo-

cality as a massive amount of vertex data is pulled into the cache which displaces much

of the cache contents and intensely reduces the opportunity for future reuse. We also

observed that locality optimizing relabeling algorithms does not improve locality of

hubs. Moreover, efficient processing of hubs becomes more important as they dedicate

a great percentage of total edges (therefore, a great percentage of processing time) to

themselves.

6.2.2 Step 2: Considering Potential Solutions

As we explained in Section 3.2.2, in a pull traversal (Algorithm 1), each vertex reads data

of its in-neighbours (Line 4) and writes its new data. Therefore most of the capacity of

cache is dedicated to support random read accesses to data of source vertices in pull

traversal.

In a push traversal (Algorithm 2), on the other hand, the new data of out-neighbours

(Line 5) are randomly updated by data of source vertices and most of the capacity of

cache is dedicated to support random write accesses to destination vertices in push

traversal.

6.2.3 Step 3: Matching & Adjusting

The skewed degree distribution of graphs implies that for processing incoming edges

to in-hubs, the number of destination vertices (in-hubs) is much less than the number

of source vertices. Therefore, cache is efficiently used only if it is dedicated to the

destination vertices. In other words, push direction is suitable for traversing incoming

edges to in-hubs.

Chapter 6. iHTL: Exploiting in-Hub Temporal Locality in SpMV 67

Fl
ip

pe
d

Bl
oc

k
1

Fl
ip

pe
d

Bl
oc

k
2

∅

Sparse Block

Hubs VWEH FV

Push Pull

FV

Figure 6.1: Adjacency matrix of an iHTL graph with two Flipped Blocks - Pull direction

corresponds to a column-major traversal and push direction corresponds to a row-major

traversal - The Zero Block (∅) does not contain any edges

On the other hand, when processing incoming edges to non in-hubs, we need to

access data of a small number of in-neighbours. The pull direction facilitates better

locality while it does not require race protection.

6.2.4 Step 4: Merging

As we want to apply different directions for different subgraphs, we need to separate

subgraphs. As a result, we need a preprocessing step that separates incoming edges to

in-hubs from other edges.

6.3 iHTL: In-Hub Temporal Locality

6.3.1 iHTL Graph

In order to facilitate push and pull traversals in iHTL, we distinguish blocks (i.e., sub-

graphs) within the graph adjacency matrix. Figure 6.1 shows the adjacency matrix of an

iHTL graph. We use the convention that a pull traversal corresponds to a column-major

traversal of the adjacency sub-matrix, while a push traversal corresponds to a row-major

traversal.

The iHTL graph is comprised of:

• A number of Flipped Blocks that contain incoming edges to in-hubs,

• A Sparse Block that contains edges to non-hubs, and

68 6.3. iHTL: In-Hub Temporal Locality

• A Zero Block that contains no edges.

iHTL uses push traversal for processing incoming edges to in-hubs and it is neces-

sary to ensure data of in-hubs are maintained in the cache. For a graph that has more

in-hubs than the cache has capacity for, iHTL creates multiple flipped blocks.

Due to the skewed degree distribution of graphs, flipped blocks are very dense

(contain few hubs, but many edges). We will see in Section 6.4.5 that flipped blocks

in iHTL contain up to 70% of the edges.

The sparse block, on the other hand, contains edges to non-hubs and iHTL uses pull

traversal which dedicates cache to the source vertices of edges and since there is no

in-hub in the sparse block, reuse of cache contents is improved.

To create these blocks, iHTL categorizes vertices into:

• In-hubs,

• VWEH: Vertices With Edges to Hubs, and

• FV: Fringe Vertices, which have no edges to in-hubs.

In iHTL, all edges in the flipped blocks are either edges from VWEH to in-hubs,

or from in-hubs to in-hubs. Fringe vertices do not link to in-hubs. As such, they do

not appear in flipped blocks and a zero block (∅) appears in the adjacency matrix

(Figure 6.1).

We separate out fringe vertices in order to (1) avoid loading their vertex data from

main memory during processing of flipped blocks, and also to (2) shrink the size of

topology data of flipped blocks.

6.3.2 Creating The iHTL Graph

The iHTL graph (Figure 6.1) is created in 3 steps:

(1) Creating The Relabeling Array: To enforce the new arrangement of vertices, the

iHTL relabeling array is created such that all in-hubs have smaller labels than VWEH

and all VWEH have smaller labels than FV. iHTL brings vertices of the same type (in-

hubs, VWEH, and FV) close to each other by assigning consecutive IDs. However, it

keeps the initial order between vertices of the same type in VWEH and FV. In this way,

iHTL tries to have minimal impacts on the initial neighbourhood of the vertices, which

is important to retain locality that exists in the graph.

Firstly, in-hubs are selected as a number of vertices with the highest in-degree and

first IDs are dedicated to in-hubs. The number of in-hubs depends on the number of

flipped blocks and is discussed in Section 6.3.3. Secondly, the VWEH is identified by

Chapter 6. iHTL: Exploiting in-Hub Temporal Locality in SpMV 69

traversing CSC representation of the main graph for the selected in-hub vertices. The

remaining vertices are FV.

It is worth mentioning that contrary to locality optimizing relabeling algorithms like

GOrder and Rabbit-Order, the relabeling array in iHTL does not improve locality and

is used to form the subgraphs that are required in iHTL adjacency matrix. Locality is

improved in iHTL by increasing reuse in push traversal for incoming edges to in-hub

vertices.

(2) Creating Flipped Blocks: Flipped blocks in iHTL contain in-edges of in-hubs.

If a flipped block contains H in-hubs, then the i-th flipped block contains edges to the

in-hubs with IDs in the range HRi = [(i − 1)H, iH). Creating flipped blocks requires a

pass over outgoing edges from {hubs ∪ VWEH} in the CSR representation of the main

graph and selecting edges with in-hub destinations (that are identified by using the

iHTL relabeling array).

(3) Creating The Sparse Block: The sparse block of iHTL contains edges to non-hubs

that are processed in pull direction. It is formed by a pass over the CSC representation

of the main graph for all in-edges to {VWEH ∪ FV} and relabeling source of edges

using the iHTL relabeling array.

6.3.3 Number of in-Hubs and Flipped Blocks

The main benefit of iHTL is to traverse the flipped blocks such that random accesses are

made to the few hubs that are maintained in the cache. To accomplish this, the num-

ber of hubs is dimensioned based on a combination of cache size and graph structure.

Taking cache size into account is critical to catch the random accesses to the in-hubs on

chip. However, graph data sets may require more hubs than contemporary processor

cache sizes can handle. Because of this, iHTL fixes the number of in-hubs in a flipped

block based on cache size and constructs multiple flipped blocks as needed based on

graph structure.

The number of in-hubs in a flipped block is determined by the on-chip cache size.

We identified that the level 2 cache is the best location for holding the vertex data of

in-hubs (Section 6.4.6). As such, we specify the number of hubs per flipped block as H

by dividing the level 2 cache size by the size of vertex data.

If graph structure mandates more hubs, we increase the number of flipped blocks.

Therefore, iHTL needs to balance the benefit of creating more flipped blocks with

the drawbacks. The benefit is improved locality, however, there are two drawbacks of

70 6.3. iHTL: In-Hub Temporal Locality

Algorithm 5: SpMV in iHTL

Input: iHTL_graph h, Di−1, Di

/* Push traversal of the flipped blocks */
1 par_for f b ∈ h. f lipped_blocks
2 par_for v ∈ {h.hubs ∪ h.VWEH}
3 foreach hub ∈ f b.hubsv do
4 buffer_dtid

hub+ = Di−1
v ;

/* Aggregation of thread buffers */
5 par_for hub ∈ h.hubs
6 foreach t ∈ threads do
7 Di

hub+ = buffer_dt
hub;

/* Pull traversal of the sparse block */
8 par_for v ∈ {h.VWEH ∪ h.FV}
9 foreach u ∈ N−

v do
10 Di

v+ = Di−1
u ;

increasing the number of flipped blocks: (1) While all members of {hubs∪VWEH} have

edges to in-hubs in the first flipped block, this number diminishes in subsequent flipped

blocks, reducing efficiency as some fetched vertex data will not be used during push

traversal. (2) Flipped blocks, moreover, increase the size of the graph topology data,

as each block requires its own metadata. Based on these observations, iHTL allows

a new flipped block to be formed if its hubs have edges from at least 50% of the

{hubs ∪ VWEH}.

If HVi = {s ∈ {hubs ∪ VWEH}|∃(s, h) ∈ E ∧ h ∈ HRi}, iHTL increases the number

of flipped blocks (# f b), while |HV# f b| > 0.5 ∗ |HV1|. In order to calculate |HVi|, a pass

over in-edges to H in-hub vertices in the i-th flipped-block is required to mark the HV

members and one other pass is needed to count the number of marked vertices.

6.3.4 iHTL Processing

In parallel processing of a flipped block, concurrent threads will perform random up-

dates to the vertex data of in-hubs. To avoid race conditions, we opt for the buffering

technique 2.4.5 (where each thread operates on copies of the vertex data which are later

merged) as it is more efficient in the setting of iHTL using the private and fast L2 cache

for each thread. As we see in the evaluation, buffer merging in iHTL does not take more

than 3% of iHTL execution time (each thread buffers H ∗ # f b vertex data).

Algorithm 5 shows SpMV execution for iHTL. Flipped blocks (Lines 1-4) use push

Chapter 6. iHTL: Exploiting in-Hub Temporal Locality in SpMV 71

traversal in iHLT. For each flipped block, the old data of a vertex v that has edges

to hubs (f b.hubsv) is read and the related index of the local buffer (buffer_dtid) of

thread (tid) is updated. Since threads write updates locally during processing flipped

blocks, the parallel for loop in Line 1 does not require synchronization between threads

and different threads can process vertices of different flipped blocks. However, each

thread should process only one flipped block at a time.

After completion of processing flipped blocks, thread buffers are merged (Lines 5-7)

to specify data of hubs. Finally, pull traversal is used for processing the sparse block

(Lines 8-10).

6.4 Evaluation

We use the SkyLakeX-2 machine (Appendix A) to evaluate iHTL in comparison to

(i) GraphGrind1 (commit 5099761) [153], (ii) GraphIt2 (commit c4781d8, OpenMP) [175]

, and (iii) Galois3 (V5, commit 6ce5f0d) [66, 123] are graph processing frameworks we

use to evaluate iHTL.

We evaluate iHTL using the PageRank application which has been implemented

in all graph processing frameworks and iteratively performs SpMV-type calculations:

PRi
v = 0.15

n + 0.85 ∑
u∈N−

v

PRi−1
u

|N+
u | . The vertex data size is 8 bytes.

6.4.1 iHTL vs Pull and Push Implementations

Table 6.1 compares per iteration PageRank execution time for iHTL vs pull and push

traversals in different graph processing frameworks (Galois does not include PageRank

in push direction). We compare against several frameworks as each applies a different

set of optimizations. GraphGrind performs an edge-balanced partitioning for a pull

traversal. GraphIt includes the Cagra [174] locality optimizations (Section 6.5) which

make it faster than Galois for some graphs. Table 6.1 demonstrates the effectiveness

of the iHTL locality optimizations as it is faster than different implementations of pull

traversal by 1.5× - 2.4×.

Table 6.1 also shows that iHTL preserves the initial locality of graphs well, even for

graphs like “SK-Domain” with high initial locality.

1https://github.com/DIPSA-QUB/GraphGrind
2https://github.com/GraphIt-DSL/graphit
3https://github.com/IntelligentSoftwareSystems/Galois/

https://github.com/DIPSA-QUB/GraphGrind
https://github.com/GraphIt-DSL/graphit
https://github.com/IntelligentSoftwareSystems/Galois/

72 6.4. Evaluation

Push Pull iHTL
GGrind GraphIt GGrind GraphIt Galois

LvJrnl 91 770 54 106 37 28
Twtr10 176 340 143 76 114 57
TwtrMpi 895 1,606 693 402 422 268
Frndstr 1,352 2,023 1,149 858 885 627
SK 828 2,547 289 187 176 112
WbCc 1,245 1,444 981 606 664 382
UKDls 1,606 1,346 535 312 281 231
UU 2,479 3,626 757 430 390 320
UKDmn 2,637 1,827 806 439 407 348
ClWb9 6,844 6,220 7,301 3,405 4,407 2,367
Avg. Speedup 4.8× 9.5× 2.4× 1.7× 1.5× 1×

Table 6.1: Performance of one iteration of SpMV PageRank (in milliseconds) in push

direction, pull direction, and iHTL

6.4.2 Memory Accesses and Cache Misses

Table 6.2 compares the memory accesses (loads and stores instructions) and also the

level 3 cache misses for pull traversal vs iHTL, captured using PAPI. iHTL incurs ad-

ditional memory accesses due to: (1) increased volume of topology data (Section 6.4.3),

(2) additional memory accesses in processing flipped blocks (when data of one vertex is

read in different flipped blocks), (3) merging buffers and (4) resetting buffers. However,

all these memory accesses are sequential and assisted by prefetching.

As such, the key distinction in cache misses that impacts performance occurs when

processing in-hubs: where the pull traversal performs random reads that result in L3

cache misses, iHTL performs random writes captured by the L2 cache. This large

difference in L3 cache misses is a key explainer for the performance of iHTL.

6.4.3 Memory Space Overhead

Table 6.3 compares the memory size of CSC representation of the graphs in comparison

to their iHTL graphs. The topology data grows in iHTL compared to a standard com-

pressed sparse columns representation. This results from replication of the index array

for each block. However, topology data is read sequentially from main memory as the

graph topology and is accelerated by prefetching. The size increase is therefore not a

major problem.

Chapter 6. iHTL: Exploiting in-Hub Temporal Locality in SpMV 73

Dataset Memory Accesses L3 Cache Misses L2 Cache Misses

Pull iHTL Pull iHTL Pull iHTL

LvJrnl 502 630 25 23 148 54

Twtr10 662 1,216 72 61 207 132

TwtrMpi 3,219 5,917 510 341 1,023 606

Frndstr 4,042 6,627 1,317 974 1,733 1,392

SK 4,243 5,702 194 169 316 235

WbCc 4,656 5,715 673 540 1,167 817

UKDls 8,630 10,803 346 349 480 477

UU 11,917 14,637 493 469 782 647

UKDmn 13,942 15,923 525 528 730 729

ClWb9 25,306 26,797 3,537 3,207 3,869 3,539

Table 6.2: Memory accesses (load and store instructions), L3 and L2 cache misses (in

millions)

Dataset CSC (GiB) iHTL (GiB) iHTL Overhead (%)

LvJrnl .9 1.0 3

Twtr10 1.2 1.9 57

TwtrMpi 6.2 9.7 56

Frndstr 7.5 10.7 42

SK 8.2 8.5 4

WbCc 8.5 8.9 5

UKDls 16.5 17.0 3

UU 22.5 23.3 3

UKDmn 26.6 27.2 2

ClWb9 43.8 44.9 3

Table 6.3: Size of topology data (in GigaBytes)

6.4.4 iHTL vs Relabeling Algorithms

To have a better scale of locality optimization of iHTL, Table 6.4 compares PageRank exe-

cution time for iHTL and pull traversal of the datasets after relabeling by SlashBurn (SB),

GOrder (GO), and Rabbit-Order (RO).

Relabeling algorithms rearrange the vertices to provide better reuse of vertex data,

and as we explained in Section 3.4.4, they can provide better locality for non-hub ver-

tices. However, a structure-agnostic pull traversal does not allow relabeling algorithms

to improve locality of hubs. In contrast, iHTL targets locality of hubs, which capture a

significant portion of the edges (Table 6.5) and results in out-performing the relabeling

74 6.4. Evaluation

Iteration Time (ms) Preprocessing Time (s)
SB
Pull

GO
Pull

RO
Pull iHTL SB GO RO iHTL

LvJrnl 44 45 48 28 4 362 6 0.9
Twtr10 63 101 84 57 9 712 15 0.9
TwtrMpi 345 306 399 268 68 5,697 66 4.9
Frndstr 841 682 652 627 78 4,894 139 5.8
SK 212 192 153 112 240 588 35 4
WbCc 601 492 410 382 112 6,587 72 3.5
UKDls 356 234 231 1,044 67 3.3
UU 537 346 320 1,736 80 3.8
UKDmn 492 399 348 1,022 69 5.5
ClWb9 3,147 2,367 416 16.9
Avg. Speedup 1.5× 1.4× 1.3× 1× >200× >2000× 38× 1×

Table 6.4: Left: Execution time (in milliseconds) of pull traversal after relabeling vs iHTL -

Right: The preprocessing time of relabeling algorithms vs iHTL (in seconds)

algorithms. Figure 6.2 compares the last level cache miss rates of iHTL and relabeling

algorithms.

The right side of Table 6.4 compares the preprocessing time of iHTL to relabeling

algorithms. GOrder has a sequential implementation. SlashBurn and Rabbit-Order have

parallel codes; however, the complexity of their algorithms makes them much slower

than iHTL. iHTL has a simple preprocessing algorithm (Section 6.3.2) and does not

need to investigate the neighbourhood of each vertex in detail. This gives iHTL a very

short preprocessing time.

6.4.5 Execution Breakdown & Graph Statistics

Table 6.5 characterizes the iHTL graph and relative processing speed for flipped blocks.

For social networks, flipped blocks contain 45% - 65% of the edges. The push traversal

of flipped blocks makes good use of the sequentially fetched vertex data, as a high

percentage of the vertices link to the hubs (column “VWEH”). As a result, iHTL spends

just 22% - 40% of its time for processing flipped blocks of social networks. Web graphs

contain only one flipped block that contains 40% of edges on average and is processed

in just 25% of the processing time, on average.

The relatively high processing speed of flipped blocks compared to the whole graph

is captured by the flipped block speed (column “FB speed”). It is calculated as the

percentage of edges in the flipped blocks divided by the relative time spent in flipped

Chapter 6. iHTL: Exploiting in-Hub Temporal Locality in SpMV 75

Figure 6.2: [Simulation] The last level cache miss rate of SpMV conditional on the degree

of the traversed vertex

blocks. Values higher than 1 indicate that an edge in a flipped block is processed more

efficiently than average across the graph. This is a consequence of containing the ran-

dom memory accesses in the on-chip caches during processing of flipped blocks, which

cannot be guaranteed for the sparse block.

Table 6.5 shows that buffer aggregation in iHTL takes less than 2.5% of the total

processing. Each flipped block implies buffer merging overhead; however, by inspect-

ing the graph structure (Section 6.3.3), iHTL incurs this overhead only when there is a

corresponding gain in locality.

6.4.6 Buffer Size

Table 6.6 shows the impact of iHTL buffer size. As we explained in Section 6.3.3, the

buffer size determines the number of hubs in each flipped block. So, we need to set the

best size for buffer in order to provide the fastest random accesses to the buffers while

processing flipped blocks.

Table 6.6 shows that aligning the buffers to L1 cache size is inefficient as its 32 KB

76 6.4. Evaluation

Dataset Graph Topology Statistics Exec. Breakdown

#FB VWEH
Min. Hub

Degree

FB

Edges

FB

Time

Buffer

Merging

FB

Speed

LvJrnl 1 47% 158 47% 32% 2.38% 1.48

Twtr10 2 28% 109 67% 37% 1.73% 1.81

TwtrMpi 8 87% 223 59% 41% 1.73% 1.46

Frndstr 16 60% 192 45% 22% 1.56% 2.00

SK 1 78% 1,389 68% 48% 0.52% 1.43

WbCc 1 56% 1,351 44% 13% 0.18% 3.32

UKDls 1 65% 4,844 49% 34% 0.28% 1.45

UU 1 71% 3,703 44% 32% 0.22% 1.39

UKDmn 1 67% 3,961 27% 21% 0.19% 1.26

ClWb9 1 9% 2,654 13% 4% 0.03% 2.94

Table 6.5: iHTL graph statistics and iHTL PageRank execution breakdown (FB: flipped

blocks)

size is too small to accommodate data of many hubs. The L2 cache is private to each

core, which implies unfettered access. Increasing the buffer size beyond the L2 size

is detrimental for social networks; however, web graphs tolerate this well. Increasing

buffer size beyond L2 size can be seen to be sub-optimal as it increases usage of the

L3 cache, which is shared between the threads and is non-inclusive and non-exclusive

(NINE) with L2. Hence L3 size (22 MB per 16 cores) provides only fractionally more

space per core compared to the 1 MB L2 cache. Consequently, L2 cache is the best choice

for accommodating data of in-hub vertices.

Dataset L1-Size L2-Size / 2 L2-Size L2-Size ∗ 2

TwtrMpi 340 269 268 329

Frndstr 778 652 627 669

WbCc 424 384 382 376

UKDls 242 235 231 228

UU 337 326 320 318

UKDmn 355 347 348 343

ClWb9 2,424 2,356 2,367 2,371

Table 6.6: Execution time (in milliseconds) for different buffer sizes

Chapter 6. iHTL: Exploiting in-Hub Temporal Locality in SpMV 77

6.5 Related Work

In this section, we compare iHTL to the cache blocking techniques that are used in

SpMV-based graph processing and explain the limitation of these techniques for power-

law graphs.

Starting from [80], blocking techniques have been widely used to optimize different

metrics in distributed memory and shared memory computing systems. SpMV cache

blocking technique [78, 79] works based on bringing a data block to cache, performing

all random accesses to these data (that results in cache hits), and continuing to the next

block.

Vertical cache blocking (or partitioning edges by destination 2.4.6) is used in push

traversals of some graph frameworks [153, 159, 173] in order to prevent race conditions

between concurrent updates.

Cagra [174] applies horizontal cache blocking of the adjacency matrix in a pull traver-

sal that limits the range of random memory accesses during processing of a block and

cache misses are reduced. Per-thread buffers are used in Cagra to contain intermediate

updates of data of all vertices.

LAV [169] reduces the overheads of Cagra by creating horizontal dense blocks only

for those out-hubs that, in total, capture 80% of the out-edges. To avoid buffer merging

and to reduce cache misses, LAV prevents concurrent processing of blocks that may

introduce load imbalance.

iHTL provides an efficient buffering that is limited to in-hubs. Moreover, iHTL’s

flipped blocks are easily load-balanced and are processed concurrently (Section 6.3.4).

Since real-world graphs are not truly power-law graphs [31], it is not always possible

to select the number of dense blocks using estimated degree distribution statistics. So,

iHTL identifies the number of flipped blocks by assessing the relation between hubs

independently of their degree (Section 6.3.3), and flipped blocks contain a wide range

of 13% - 68% of the edges (Table 6.5).

On the other hand, efficient horizontal blocking based on out-degrees is, fun-

damentally, impossible in some graphs. As we explained in Section 3.5.1, in-hubs are

almost symmetric in social networks (in-hubs are out-hubs), but web graphs do not have

symmetric in-hubs. Therefore, the lack of very high out-degrees in the graph implies

that horizontal blocking cannot create dense blocks, which is most prominent in web

graphs. In this case, horizontal blocking is not able to improve locality and increases

78 6.6. Conclusion & Further Applications

the overhead of reading topology data. Similarly, if the graph does not have very high

in-degree vertices, it is not possible to create vertical dense blocks.

As an example, SK-Domain with maximum in- and out-degrees of 8.6 million and

13 kilo, has in-hubs and no out-hub, and for creating horizontal dense blocks based on

out-hubs, 36% of vertices are required to capture 80% of edges, but iHTL creates a single

vertical flipped block that contains 68% of the edges by selecting 0.3% of the vertices as

in-hubs (Section 6.4.5). In this way, iHTL creates flipped blocks using the same type

of hubs that experience low locality: in order to optimize locality of a pull traversal,

in-hubs do not experience locality and iHTL creates vertical flipped blocks based on

in-hubs (that exist) and not based on out-hubs (that may not exist).

Moreover, iHTL maintains the relative order of vertices within the VWEH and FV

categories, while other locality optimizing algorithms apply degree ordering through-

out [169, 174]. This destroys locality expressed in the initial assignment of vertex labels.

6.6 Conclusion & Further Applications

This chapter introduced the iHTL algorithm that improves temporal locality by applying

the Uniform Memory Demands strategy. iHTL deploys the push and pull traversals for

distinct subgraphs and the evaluation shows that iHTL is faster than pull and push

traversals in graph processing frameworks. Furthermore, iHTL outperforms state-of-

the-art locality optimization relabeling algorithms.

We consider the following suggestions to accelerate iHTL:

• The size of iHTL topology data (Section 6.4.3) can be reduced by deploying light-

weight graph compression techniques [25, 26] and vectorization [159, 169].

• iHTL reduces cache misses of hubs and high-degree vertices. Locality optimizing

relabeling algorithms like Rabbit-Order improve spatial locality of low-degree ver-

tices (Section 3.4.3). This suggests that locality of the sparse block can be improved

by applying Rabbit-Order.

Similar to how iHTL optimizes memory locality in the pull traversal, the push traver-

sal can be optimized. In the push direction, outgoing edges from out-hubs form a wide

range of destinations that cannot be stored in the cache and ruin the performance of

push traversal. For this subgraph it is necessary to deploy the pull direction.

In other words, we can extract subgraphs containing outgoing edges from out-hubs.

Then, for each of these subgraphs, we process vertices in the pull direction. Since source

Chapter 6. iHTL: Exploiting in-Hub Temporal Locality in SpMV 79

vertices (out-hubs) are exponentially fewer in count than the destination vertices, ran-

dom memory accesses in the pull processing of these blocks (for reading data of out-

hubs) are satisfied by cache. However, we have to note that this optimization is useful

for graphs that have out-hubs (Section 3.5.1).

We introduced iHTL as a traversal algorithm for all edges of the graph; however, the

dense iterations of graph traversals like Connected Components, Breadth First Search,

and Single Source Shortest Path can also benefit from iHTL, as in these iterations all or

most edges of the graph are processed.

Chapter 7

LOTUS: Locality Optimizing

Triangle Counting

7.1 Introduction

Triangle Counting (TC) is one of the fundamental problems in graph processing and is

used in several fields of science, humanities, and technology [15,16,35,43,57,61,120,127,

162, 164]. Different algorithms and optimizations have been proposed in the literature.

However, efficient TC is still a challenge for large and fast-growing graph datasets.

In this chapter, we study the effects of skewed degree distribution of the graphs on

TC. We identify the main challenges in state-of-the-art TC algorithms and opportunities

for improvement, in particular: (1) poor memory locality, especially during traversal of

triangles containing non-hub vertices, (2) (lack of) compactness of the graph topology

representation, and (3) opportunity to prune searches that cannot uncover triangles.

Then, we use the Uniform Memory Demands strategy to design the LOTUS, a

structure-aware and locality-optimizing TC algorithm. Lotus improves TC by distin-

guishing 4 types of triangles (depending on whether they include 3, 2, 1 or 0 hubs) and

splits TC into multiple phases, corresponding to the types of triangle. Each TC phase is

designed as a stand-alone TC algorithm, using bespoke, compact data structures. The

algorithms and data structures are designed such that random memory accesses, a key

challenge for memory locality in graph processing, are targeted towards a small data

structure in each TC phase to utilize hardware caches in the best possible way.

This chapter is structured as follows: Section 7.2 explains key background termi-

nology and TC algorithms. Section 7.3 presents the performance analysis of TC for

80

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 81

power-law graphs. Section 7.4 explains the design of Lotus and Section 7.5 introduces

the Lotus algorithm which is evaluated in Section 7.6. Section 7.7 discusses further re-

lated work and avenues for future work and further applications of Lotus are presented

in Section 7.8.

7.2 Prerequisites

7.2.1 Terminology

In a TC algorithm, the target is to identify the number triangles of an undirected graph

(each 3 vertices that are connected). For an undirected graph G = (V, E) (Section 2.1),

edge (v, u) is called the symmetric edge of edge (u, v), if u < v. Nv is the set of neigh-

bours of vertex v, N<
v = {u ∈ Nv|u < v}, and N>

v = {u ∈ Nv|u > v}.

Vertices are divided into (1) hub and (2) non-hub vertices (In Section 7.5.1, we ex-

plain how Lotus separates hubs from non-hubs). Since the graph is undirected, hubs,

in-hubs, and out-hubs are the same.

An edge can be in one of 3 forms: (1) hub to hub edge, (2) hub to non-hub edge, or

(3) non-hub to non-hub edge.

A hub edge is an edge with at least one hub endpoint. A non-hub edge is an edge

without any hub as its endpoints.

A triangle is called a hub triangle if at least one of its vertices is a hub vertex.

7.2.2 TC Algorithms

Three main TC algorithms are summarized as the following [138]:

• The Node iterator algorithm enumerates each pair of neighbours of a vertex and

checks if they are connected,

• The Edge iterator algorithm searches for common neighbours of two endpoints of

each edge, and

• The Forward algorithm sorts vertices by their degrees in descending order and

identifies common neighbours between a vertex and each of its neighbours.

Algorithm 6 is an improved version of the Forward algorithm [55] that we use as the

baseline algorithm. For each vertex v and each u ∈ N<
v , N<

v ∩ N<
u specifies the number

of triangles including u and v. By limiting neighbours to N<, a triangle is counted only

once and the execution time is reduced as only half of the edges are processed. The

82 7.3. Analysis of The Forward Algorithm for Power-Law Graphs

intersection is performed using merge join [138], bitmap lookup [106], hashing [41,138],

or binary search [62].

Algorithm 6: Forward algorithm
Input: G(V, E)
Output: Triangles

1 G′(V ′, E′) = reorder_by_degree(G);
2 triangles = 0;
3 par_for v ∈ V ′

4 par_for u ∈ N<
v

5 triangles + = |N<
v ∩ N<

u |
6 return triangles;

7.3 Analysis of The Forward Algorithm for Power-Law Graphs

In this section, we investigate the implications of real-world graphs with skewed degree

distribution on performance of the Forward algorithm.

7.3.1 Low Locality in Processing Non-Hub Vertices

The Forward algorithm (Algorithm 6) uses degree ordering to accelerate TC. Degree

ordering improves load balance and reduces the number of comparisons occurring in

the intersection operation [7].

For each edge, only one of (u, v) or (v, u) needs to be present in the graph as the

symmetric edges are redundant for TC. In other words, each edge is attached to only

one of its endpoints.

Degree ordering decides that (v, u) is retained if v < u. By consequence, only vertices

v with a smaller ID (v < u) are stored in the neighbour list of a vertex u. As degree

ordering assigns lower IDs to hubs, the neighbour list of a hub only contains hubs, and

the neighbour list of a non-hub contains both hub and non-hub neighbours.

This is illustrated in an example graph (Figure 7.1) where edges have the same color

as the vertex they are assigned to by degree ordering. Edges between vertex 3 and hub

vertices 0 and 1 are assigned to vertex 3 and vertex 3 also has an edge to vertex 2 which

is a non-hub.

An immediate consequence of this organisation is that the neighbour lists of hubs (con-

taining hub-to-hub edges) are very frequently accessed. Indeed, hubs have many neigh-

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 83

0

7

1
6

3

4

2 5

8

9

Figure 7.1: An example graph - hubs: 0, 1

bours, which by construction are mostly non-hubs. Each time a non-hub vertex v that

is a neighbour of a hub u is processed, the neighbour list of the hub is accessed (Algo-

rithm 6, Line 5). Frequent accesses to the hubs’ neighbour lists prompt the processor

cache to maintain hub neighbour lists in cache. Column 2 of Table 7.1 shows that these

neighbour lists, consisting of hub-to-hub edges, include 18.1% of the edges of the graph.

The flip-side of this is that there is a low opportunity for the cache to retain neigh-

bour lists of non-hubs. While each non-hub neighbour list is accessed less frequently,

together they constitute 81.9% of the edges of power-law graphs (Table 7.1, Columns 3

and 5).

Dataset Hub Edges (%) Non-hub to

Non-hub

Edges (%)

Hub

Triangles

(%)

Relative Den-

sity of Hubs

Sub-graph

Fruitless

Searches

(%)
Hub

to Hub

Hub to

Non-hub
Total

LJGrp 4.7 76.9 81.5 18.5 99.9 467 78.1

Twtr10 43.5 29.8 73.3 26.7 99.6 4,347 64.0

Twtr 26.3 60.3 86.6 13.4 99.7 2,627 72.2

TwtrMpi 19.1 53.5 72.7 27.4 99.4 1,911 67.8

Frndstr 6.0 25.3 31.3 68.7 47.3 600 36.9

SK 4.9 75.6 80.5 19.5 97.0 490 56.4

WbCc 37.0 35.9 72.8 27.2 99.6 3,695 47.1

UKDls 14.2 63.9 78.2 21.8 98.8 1,423 39.9

UU 12.5 61.9 74.4 25.6 96.2 1,252 31.7

UKDmn 12.8 64.9 77.7 22.3 96.6 1,279 39.1

Average 18.1 54.8 72.9 27.1 93.4 1,809 53.3

Table 7.1: Topological characteristics of hubs (1% of vertices with maximum degrees

selected as hubs)

84 7.3. Analysis of The Forward Algorithm for Power-Law Graphs

7.3.2 Lack of Compactness of Graph Topology

In graph algorithms like SpMV, BFS, SSSP, and CC, the main memory access challenge

consists of random memory accesses to vertex data, which typically consists of 1–64 bits

per vertex. Random memory accesses thus target a data set of size proportional to the

number of vertices.

In contrast, the data accessed per vertex consists of the neighbour lists, i.e., the graph

topology, in TC. Thus, random memory accesses in TC target a much larger data set of

size proportional to the number of edges. This shows why achieving memory locality

in TC is both more challenging and more important.

Driven by this comparison, we question whether it is possible to represent neighbour

lists more compactly, without incurring overheads. The key to this is again in the hubs:

the number of hubs is very few, but the majority of the IDs in neighbour lists of any

vertex refer to hubs. In the power-law graphs used in this study, 1% of vertices are

connected to 72.9% of edges (Table 7.1, Column 4).

Drawing on the principles of coding and compression theory [77], it is wasteful to

represent highly frequently occurring IDs using the same bitwidth as rarely occurring

IDs. The penalty for doing so is inefficient cache utilization. While we reference coding

theory to explain the problem, it is important to design techniques that do not incur

runtime overhead to read graph topology data, as this is the main operation in TC.

7.3.3 Fruitless Searches

Out of the many neighbour list intersections performed, a relatively low number of

triangles is found. Conservatively, all combinations need to be investigated to ensure all

triangles are counted. However, there is some knowledge we can use to identify fruitless

searches.

Assume there is a set of vertices S ⊂ V where we know ahead of time that Nv ∩ S =

{}. Let F = Nu ∩ S, then we know ahead of time that there exists no triangle (f , u, v),

where f ∈ F as f cannot be a neighbour of v. This follows from Nv ∩ Nu = Nv ∩ (Nu \ F).

The most important S, that fits in well with the power-law graphs, is the set of hubs.

As an example, in Figure 7.1 vertex 8 processes its neighbour 6 and loads its edges {0,

1, 4}. As 8 is not connected to a hub (0 or 1), it can be inferred that no triangle exists

including vertices 8, 6 and any of the hubs.

In other words, accessing hub edges cannot result in a triangle during process-

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 85

ing non-hub vertices that have no edges to hubs (Nv ∩ Hubs = {}). However, hub

edges are frequently accessed in processing these non-hub vertices. We measured what

fraction of accessed edges point to hubs when processing these vertices (Table 7.1, Col-

umn 8). On average, 53.3% of memory accesses are performed to hub edges that can

be avoided. This data was collected using merge join intersection. Deploying binary

search intersection [62] also reduces these memory accesses (Section 7.7.3).

This shows that if we know that v is not connected to a hub, it is possible to prune

the search and the power-law structure of graphs is helpful to prevent accessing a large

fraction of edges in processing non-hub vertices.

7.3.4 Highly Dense Hubs Sub-graph

We have already observed that hubs are few and incident to 72.9% of the edges. Interest-

ingly, as each vertex in a triangle must have two incident edges, these statistics become

even more skewed when considering hubs. Column 6 of Table 7.1 (“Hub Triangles”)

shows the percentage of triangles containing at least one hub. It shows that, on average,

93.4% of the triangles contain at least one hub.

This observation is an immediate result of the tight connections between hubs. We

define the relative density (RD) of a sub-graph S = (V ′, E′) where V ′ ⊂ V and E′ =

E ∩ (V ′ × V ′), as RDS = |E′|/(|V′|2)
|E|/(|V|2) . Column 7 of Table 7.1 reports the RDH, where H is

the set of hubs and shows that hub-to-hub edges create a dense sub-graph that is, on

average, 1809 times more dense than the full graph.

These statistics demonstrate that (i) hubs should be central to the design of a TC

algorithm; (ii) the high density of the hubs sub-graph invites a highly compact data

structure to store this sub-graph.

7.4 Algorithm Design

7.4.1 Step 1: Identifying Contrasting Demands & Behaviours

In Section 7.3, we explained that mixing hub edges and non-hub edges in the topology

of the graph, results in

• dedicating cache to hub-to-hub edges and depriving accesses to 80% of edges from

acceleration by cache,

• inefficient usage of cache capacity, and

86 7.4. Algorithm Design

• fruitless searches.

7.4.2 Steps 2 and 3: Considering Potential Solutions, Matching, and Adjust-

ing

In order to tackle these inefficiencies, we need to separate memory accesses between

hub and non-hub edges. Unlike SpMV that allows separating hub edges by separating

hub vertices from non-hub vertices, in TC, hub edges are accessed even in processing

non-hub vertices. Therefore, we need to divide the total execution into steps based on

how hub and non-hub are accessed. To that end, we distinguish 4 types of triangles:

• HHH: triangles between 3 hub vertices,

• HHN: triangles between 2 hub and 1 non-hub vertices,

• HNN: triangles between 1 hub and 2 non-hub vertices, and

• NNN: triangles between 3 non-hub vertices.

These 4 types of triangles form 3 different accesses to hub and non-hub edges during

TC:

Counting HHH and HHN Triangles To count triangles with at least two hub ver-

tices, the key question is if two hubs are connected? To check if two hubs are neighbours,

we exploit two features of power-law graphs: (1) hubs have a dense connection to each

other (Section 7.3.4), and (2) there is a small number of hubs (Section 7.3.2).

So, we represent the adjacency information of hubs in a dense bit array, with 1 bit

per pair of hubs. As there are few hubs, the bit array can be retained in cache. Using

this bit array, it is enough to iterate over all distinct pairs of hub neighbours of each

vertex and to identify triangles if two hubs in a pair are connected.

Counting HNN Triangles HNN triangles have two non-hub vertices that are con-

nected to a hub. Hence, the most frequently occurring edges, and thus the ones most

frequently queried, are hub edges. As such, we organize the search around iterating

non-hubs and their non-hub neighbours, and then querying if they have a common hub

neighbour.

To perform HNN TC efficiently, we store the hub neighbours separately from the

non-hub neighbours. Moreover, based on the observation that hubs are few but fre-

quently mentioned (Section 7.3.2), we store the hub neighbours using fewer bits per

ID.

Counting NNN Triangles In this step, we identify common non-hub neighbours be-

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 87

tween a non-hub vertex and its non-hub neighbours. This avoids loading hub edges (Sec-

tion 7.3.3) and only processes non-hub edges in this step as we separately store hub and

non-hub edges.

7.4.3 Step 4: Merging

The distinct TC that was explained in the previous section, requires to separate hub

edges from non-hub edges and to store the subgraphs separately.

7.5 LOTUS Algorithm

H
ub

s
N

on
 H

u b
s

216 Hubs Non Hubs

HHH

HNN HHN

NNN

(a) Adjacency matrix

v
h2

 h
1

h
1

h
2

(b) HHH & HHN TC

HE NHE

H2H
H2H

Hub neighbours of v

HE

v

u

u

Non-hub neighbours
of v

(d) NNN TC

v

u

u

Hub neighbours
 of u

Hub neighbours
of v

Non-hub neighbours
of v

(c) HNN TC

Non-hub neighbours
of u

HE NHE NHE

Figure 7.2: Lotus adjacency matrix and TC steps

7.5.1 Lotus Graph Structure

In order to achieve the targets explained in Section 7.4.2, Lotus creates a special graph

structure that consists of:

88 7.5. LOTUS Algorithm

• Number of Hubs: Lotus selects the 64K (216) vertices with the highest degrees as

hubs.

• Hub to Hub (H2H) Bit Array: Lotus represents hub-to-hub edges using this bit

array. Since each hub has edges only to hubs with lower IDs, H2H is a triangular

array (instead of a 2D square array). In this way, for hub vertices h1 and h2 where

h1 > h2 ≥ 0, the bit with index h1(h1 − 1)/2 + h2 specifies if h1 has an edge to h2.

• Hub Edges (HE) Sub-graph: This sub-graph represents all hub edges of the graph.

It is stored in CSX format. As Lotus selects 64K hubs, each edge (neighbour ID)

in HE sub-graph is represented in 16 bits. For vertex v, HE represents all hub

neighbours h of v where h < v.

• Non-Hub Edges (NHE) Sub-graph: This sub-graph represents edges from each

vertex v to its non-hub vertices u, where u < v. This sub-graph is also in CSX

format, but unlike HE, NHE assigns 32 bits memory space per edge.

Figure 7.2a shows the adjacency matrix of Lotus. The 4 types of triangles are illus-

trated to demonstrate in which range their endpoints sit. Note that hub-to-hub edges

are recorded twice: once in the HE sub-graph and once in the H2H, which overlaps HE

in the figure.

7.5.2 Lotus Preprocessing

Lotus creates its graph structure in a preprocessing step before counting triangles. Al-

gorithm 7 shows how Lotus creates its graph.

Creating Relabeling Array Lotus assigns the first consecutive IDs to hub vertices,

therefore it is necessary to relabel vertices. Line 1 creates the relabeling array. The

create_relabeling_array() function selects the hub vertices with highest degrees and

assigns the first IDs to them.

In addition to hub vertices, there are a number of high-degree vertices. If they

are assigned large IDs, the number of comparisons when processing NNN triangles is

increased (Section 7.3). So, Lotus assigns the first consecutive IDs to 10% of vertices

with the highest degrees instead of only 64K ones.

The remaining IDs are assigned to non-hub vertices in the same order as the main

graph. In this way, Lotus prevents destroying the initial locality of graphs.

create_relabeling_array() returns an array that is indexed by the original ID of a

vertex and the value at that index specifies the new ID of that vertex.

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 89

Algorithm 7: Lotus Preprocessing
Input: G(V, E)
Output: LotusGraph

1 RA = create_relabeling_array(G);
2 hubs_count = (1 ≪ 16);
3 TBitArray H2H(hubs_count);
4 Graph < ushort > HE;
5 Graph < uint > NHE;
6 par_for vold ∈ V
7 vnew = RA[vold];
8 Array < ushort > he;
9 Array < uint > nhe;

10 for uold ∈ Nvold do
11 if uold == vold then // self-edge?
12 continue;
13 unew = RA[uold];
14 if unew > vnew then // symmetric edge?
15 continue;
16 if unew < hubs_count then // hub neighbour?
17 he.push(unew);
18 if vnew < hubs_count then // hub neighbour of a hub?
19 H2H.set(vnew, unew);
20 else // non-hub neighbour
21 nhe.push(unew);
22 HE.setEdges(vnew, he);
23 NHE.setEdges(vnew, nhe);
24 return (hubs_count, H2H, HE, NHE);

Creating Bit Array and Sub-graphs Line 3 initializes the H2H triangular bit array

storing hub-to-hub edges by allocating memory of hubs_count ∗ (hubs_count − 1)/2 bits

size and setting all bits to zero.

Lines 4 and 5 initialize sub-graphs for HE and NHE where the size of each edge is

16 and 32 bits, respectively.

Lines 6-23 process each vertex in the graph. Lines 8-9 initialize the he and nhe arrays

to contain hub and non-hub neighbours of a vertex, respectively.

Each neighbour of a vertex is considered in Lines 11-21 and self-edges and symmetric

edges are ignored (Lines 11-15). Similar to the baseline algorithm (Section 7.2.2), Lotus

does not process symmetric edges and limits neighbours of a vertex to the ones that

have lower IDs. This restricts the neighbour list of vertex vnew to N<
vnew

.

90 7.5. LOTUS Algorithm

The neighbour is assigned to he (Line 17), if it is a hub neighbour. In this case,

the H2H bit array is set if the vertex and its neighbour are both hubs (Line 19). If the

neighbour is a non-hub vertex, it is added to nhe (Line 21).

After processing all edges of a vertex, Lines 22-23 call setEdges() method that sorts

the neighbour lists he and nhe and assigns them to the relevant vertex (vnew) of HE and

NHE sub-graphs, respectively.

In Lines 5 and 9, 32-bit vertex ID is sufficient for public data sets as they have fewer

than 232 vertices. However, for datasets with greater number of vertices, 64-bit IDs can

be used without losing the benefits of Lotus.

7.5.3 Counting Triangles in Lotus

Algorithm 8 shows how Lotus counts triangles:

Algorithm 8: Counting Triangles in Lotus
Input: LotusGraph (hubs_count, H2H, HE, NHE)
Output: Triangles

1 triangles = 0;

/* Counting HHH and HHN triangles */
2 par_for v ∈ HE.V
3 par_for h1 ∈ HE.Nv

4 for h2 ∈ {h ∈ HE.Nv | h < h1} do
5 if H2H.isSet(h1, h2) then
6 triangles++;

/* Counting HNN triangles */
7 par_for v ∈ NHE.V
8 par_for u ∈ NHE.Nv

9 triangles += |HE.Nv ∩ HE.Nu|;

/* Counting NNN triangles */
10 par_for v ∈ NHE.V
11 par_for u ∈ NHE.Nv

12 triangles += |NHE.Nv ∩ NHE.Nu|;

13 return triangles;

HHH and HHN Lotus creates all distinct pairs between hub neighbours of a ver-

tex (Lines 3-4) and if two hubs of a pair are connected (Line 5), a triangle has been

found. Note that the bit array is laid in “h1-major” format, ensuring that bits for sub-

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 91

sequent h2 values are placed in consecutive locations. Moreover, as h1 changes in the

outer loop on Line 3, the calculation h1(h1 − 1)/2 is reused as h2 changes in the inner

loop in Line 4.

Figure 7.2b shows counting HHH and HHN triangles for vertex v with hub neigh-

bours h2 and h1. The existence of triangle (h2, h1, v) is validated by checking if h2 has an

edge to h1 in the H2H sub-graph.

HNN Lotus finds common hub neighbours between each non-hub vertex and its

non-hub neighbours. Line 7 iterates over all vertices. For each non-hub vertex v, its non-

hub neighbours such as u are considered (Line 8), and each common hub neighbour of

u and v forms a triangle (Line 9).

In Figure 7.2c, for vertex v and its non-hub neighbours such as u (that are in NHE

sub-graph), hub neighbours of u and v (that are in HE sub-graph) are matched.

NNN Lines 10–12 are similar to the Forward algorithm to find NNN triangles in the

NHE. Lotus uses merge join for intersection as the neighbour lists of non-hub vertices

are relatively short. This prevents overheads imposed by other solutions (Section 7.7.3).

In Figure 7.2d, for vertex v and for its non-hub neighbours such as u (that are in

NHE), non-hub neighbours of u and v (that are in NHE) are matched.

7.5.4 How Does Lotus Improve Locality?

In counting HHH and HHN triangles, Lotus reads hub neighbours of a vertex in sequen-

tial accesses and iterates over all pairs of hub neighbours (Lines 3-4 of Algorithm 8). In

other words, Lotus accesses the neighbour list of a vertex only for processing that

vertex. The neighbour lists are streamed through cache. Sequentially streamed accesses

are prefetched by hardware in timely fashion. Only the H2H bit array is used (Line 5)

for random accesses to topology data. By concentrating random accesses on the H2H

bit array, the range of data accessed randomly is significantly reduced.

This increases the frequency of cache hits. Table 7.5 shows that graph datasets in this

study have edges with topology size of 0.42 - 12.30 Gigabytes in the CSX format, but the

H2H size is less than 256 Megabytes. Moreover, H2H stores edges in an addressable

format that facilitates efficient checking if two hubs are connected in constant time, and

just a few instructions. Section 7.6.6 shows that 64 Megabytes cache space suffices to

satisfy 90% of accesses to H2H.

In Algorithm 8, Lotus has two similar nested loops for counting HNN and NNN

triangles in Lines 7-8 and 10-11. These loops iterate over the same domain (the neigh-

92 7.5. LOTUS Algorithm

bour lists of NHE). Lotus keeps the body of these loops (intersections at Lines 9 and

12) separate (as opposed to fusing the loops). Two contradictory effects need to be

traded-off:

• Random memory accesses are made to HE.Nu (Line 9) and NHE.Nu (Line 12).

Reuse of this data before eviction from the cache is possible. If we were to fuse the

loops in Lines 7–12, then reuse of this data would become less likely, as the total

volume of randomly accessed data, and thus the working set size, will increase.

• The cost of traversing the NHE sub-graph itself (fetching NHE.V and NHE.Nv) is

low as this data is streamed in sequentially. The NHE topology is relatively small

as it contains only 27% of edges on average (Table 7.1, Column 7).

Lotus improves locality by dividing TC into three steps and in each step dedicates

cache to a smaller special data structure that is most frequently needed. Table 7.2

summarizes which data structure is accessed in random order. Section 7.6.2 shows that

Lotus reduces last level cache misses by 2.1× and DTLB misses by 34.6×, on average.

TC Step Random Accesses Edge Size Total Size of Edges

HHH & HHN H2H 1 bit 256 Megabytes

HNN HE.E 16 bits |HE.E| ∗ 2 Bytes

NNN NHE.E 32 bits |NHE.E| ∗ 4 Bytes

Table 7.2: Random memory accesses in Lotus TC

7.5.5 Graph Partitioning and Load Balancing in Lotus

Edge Tiling [123] improves load balance by splitting the edge list of high-degree vertices

into smaller parts and scheduling these on different concurrent threads.

In Line 3 of Algorithm 8, the amount of work each neighbour (h1) performs depends

on its offset from the first neighbour. As a consequence, we cannot evenly divide the

work between threads by assigning the same number of neighbours to each thread.

In order to parallelize the loop in Line 3 of Algorithm 8, Lotus introduces Squared

Edge Tiling 1 that creates partitions with equal work complexity for neighbours of a

vertex.
1While it is not the best name, to keep connection to known phrases, we used this name. We also added

the “Squared” to differentiate from the main concept as we want to divide a task with a complexity of

O(|Nv|2) and not O(|Nv|).

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 93

For vertex v with |Nv| neighbours, the total work is |Nv| ∗ (|Nv| − 1)/2 and if the

total work performed from the first neighbour until the i-th neighbour is f fraction of

the total work, where 0 < f < 1, then:

i ∗ (i − 1)/2 = f |Nv|(|Nv| − 1)/2 ,

or

i = (1 +
√

f (2|Nv| − 1)2 + 1 − f)/2 .

Since |Nv| ≫ f ,
i

|Nv|
≈ 1 +

√
f (2|Nv| − 1)2

2|Nv|
≈

√
f ,

or

i ≈ |Nv| ∗
√

f .

Using this formula, we can identify the boundaries to partition the loop by changing

f . As an example, for partitioning total work for a vertex with 100 neighbours into 5

partitions, the partition borders will be 0, 100 ∗
√

0.2 = 45, 100 ∗
√

0.4 = 63, 100 ∗
√

0.6 =

77,100 ∗
√

0.8 = 89, and 100.

While the number of triangles may vary per tile, the effort per tile is balanced. Lotus

performs squared edge tiling during the preprocessing step. Values of
√

f are fixed

for different vertices as f indicates the fraction of work and for dividing work into p

partitions, f = k
p , where 0 < k < p. So, values of

√
f are pre-calculated and reused in

calculating the partition boundaries of different high-degree vertices.

Section 7.6.7 shows that squared edge tiling provides 2.7× speedup in processing

HHH and HHN triangles.

7.6 Evaluation

We use the SkyLakeX and Epyc machines (Appendix A) to evaluate Lotus in comparison

to:

1. BBTC2 [167] (commit 88fe6bc) that improves load balancing in TC through better

partitioning,

2. Edge iterator in GraphGrind3 [152] (commit 5099761),

2https://github.com/GT-TDAlab/bbTC/
3https://github.com/DIPSA-QUB/GraphGrind

https://github.com/GT-TDAlab/bbTC/
https://github.com/DIPSA-QUB/GraphGrind

94 7.6. Evaluation

3. Forward algorithm implementation in GAP4 [14] (commit 6ac1afd).

4. TC of GBBS5 [51] (commit 38964eb) that improves [144] by parallelizing the inter-

section in the Forward algorithm.

All algorithms use degree ordering to accelerate TC and we report end-to-end exe-

cution time.

7.6.1 Comparison to Previous Works

Tables 7.3 compares Lotus execution time with other TC algorithms for graphs smaller

than 10 billion edges. This table shows that the speedup obtained by Lotus on the Epyc

architecture with 128 cores is less than on the other architectures. This is due to the total

on-chip cache size. The Epyc system has two sockets with 512MB total L3 cache, which

is 12 times larger than the L3 cache on the SkyLakeX machine. This large L3 cache

captures a significantly higher fraction of memory accesses, and poses lesser challenges

relating to memory locality. As a result, speedup obtained by Lotus is less, due to the

larger cache size.

Table 7.4 shows the results of Lotus in comparison to GBBS on the Epyc machine and

for graphs greater than 10 billion edges. This shows that Lotus delivers better speedups

for larger graphs.

On average, Lotus is 19.3 times faster than BBTC, 5.5 times faster than GraphGrind,

3.8 times faster than GAP, and 2.2 times faster than GBBS.

7.6.2 Hardware Counters

In Section 7.5.4, we explained how Lotus improves locality. To evaluate the locality

effects of Lotus, we compare the last level cache misses and DTLB misses of Lotus and

Forward algorithms on the SkyLakeX machine in Figure 7.3a, and Figure 7.3b. Lotus

reduces last level cache misses by up to 4.0× and on average by 2.1×. DTLB misses are

also reduced by up to 56× and on average by 34.6×.

Besides improving locality, Lotus is also a more efficient algorithm throughout. Fig-

ure 7.4 compares hardware events for execution of Lotus and Forward algorithms. It

shows that, on average, Lotus reduces memory accesses (load and store instructions) by

1.5×, hardware instructions by 1.7×, and branch mis-predictions by 2.4×.

4https://github.com/sbeamer/GAPBS
5https://github.com/ParAlg/gbbs/

https://github.com/sbeamer/GAPBS
https://github.com/ParAlg/gbbs/

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 95

Dataset SkyLakeX Epyc

BBTC GGrnd GAP GBBS Lotus BBTC GGrnd GAP GBBS Lotus

LJGrp 4.1 4.7 6.4 2.5 1.0 2.4 2.5 6.6 0.5 0.8

Twtr10 62.4 74.2 32.7 32.8 6.7 31.5 21.6 45.0 9.0 4.1

Twtr 98.0 77.0 32.1 32.1 10.0 81.3 25.8 20.3 9.4 6.1

TwtrMpi 377.7 282.2 80.5 90.5 36.8 333.3 67.2 38.8 25.9 18.2

Frndstr 129.5 129.1 70.5 76.4 56.7 59.9 33.3 27.4 24.5 23.8

SK 246.3 56.5 28.8 19.5 7.3 246.5 19.5 21.0 3.3 2.9

WbCc 602.0 649.0 121.1 233.8 64.2 534.5 134.1 92.1 51.7 21.9

UKDls - 383.3 67.7 80.0 32.7 - 58.6 89.8 38.6 12.2

UU - 134.9 61.6 74.4 29.3 - 43.8 36.0 15.0 9.5

UKDmn - 123.9 50.3 53.6 19.9 - 32.6 32.4 10.3 7.2

Lotus Avg. Speedup 11.3× 7.4× 3.0× 2.8× 22.1× 4.5× 5.3× 1.7×

Table 7.3: End to end TC execution times in seconds - GGrnd: GraphGrind - Failed

attempts are shown by dash - Avg. Speedup is the arithmetic mean over Lotus speedup

for each dataset

Dataset Epyc

GBBS Lotus

MClst 1,415.2 784.5

ClWb12 81.7 29.9

WDC14 170.1 85.7

EU15 449.3 256.9

Lotus Avg. Speedup 2.1×

Table 7.4: End to end TC execution times in seconds

7.6.3 Execution Breakdown

Figure 7.5 displays the breakdown of Lotus execution time and shows time passed in

(1) preprocessing, (2) counting HHH and HHN triangles, (3) counting HNN triangles,

and (4) counting non-hub triangles.

It shows that, on average, 19.4% of the total execution time is passed in preprocess-

ing. Moreover, on average, 40.4% of the triangle counting time is passed in counting

non-hub triangles.

Figure 7.6 compares the number of hub and non-hub triangles counted by Lotus. It

shows that, on average, 68.9% of the triangles are counted as hub triangles in Lotus and

31.1% as non-hub triangles.

96 7.6. Evaluation

L
3

M
is

se
s (

in
 b

ill
io

ns
)

0.0

10.0

20.0

30.0

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Forward Lotus

(a) Last level cache misses

D
T

L
B

 M
is

se
s (

in
 m

ill
io

ns
)

0.5

1.0

5.0

10.0

50.0

100.0

500.0

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Forward Lotus

(b) DTLB misses (Log scale vertical axis)

Figure 7.3: Comparison of last level cache misses and DTLB misses [SkyLakeX]

M
em

or
y

A
cc

es
se

s (
in

 b
ill

io
ns

)

0

500

1,000

1,500

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Forward Lotus

(a) Memory accesses (load &

store instructions)

H
W

 In
st

ru
ct

io
ns

 (i
n

bi
lli

on
s)

0

2,500

5,000

7,500

10,000

12,500

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Forward Lotus

(b) Hardware instructions
B

ra
nc

h
 M

is
-p

re
di

ct
io

ns
 (i

n
bi

lli
on

s)

0.0

25.0

50.0

75.0

100.0

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Forward Lotus

(c) Branch mis-predictions

Figure 7.4: Comparison of hardware events [SkyLakeX]

Figure 7.7 compares the number of edges in HE and NHE sub-graphs. It shows that,

on average, Lotus processes 50.1% of edges as hub edges. The number of triangles and

edges are different from Table 7.1 as 1% of vertices have been selected there as hubs.

7.6.4 Less Power-Law Graphs

Figures 7.7 and 7.6 show that less power-law graphs may not benefit from Lotus as

other datasets. For example, the Friendster dataset has a relatively low skewness and

the highest degree is 5K. However, Lotus selects a constant number of hubs (64K). By

consequence, only 7.6% of the edges connect to these hubs and Lotus spends most of

the TC time in counting non-hub triangles (Figure 7.5).

In general, less power-law graphs can be placed in two categories:

1. As we explained in Section 3.5.1, social networks with a great number of low-

degree hubs where the tight connection between high-degree vertices allows im-

proved performance by recursively applying Lotus and splitting the NHE sub-

graph further in new H2H, HE and NHE components, similar to how iHTL ex-

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 97

C
on

tr
ib

ut
io

n
(%

)

0%

25%

50%

75%

100%

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Preprocessing HHH & HHN HNN NNN

(a) SkyLakeX

C
on

tr
ib

ut
io

n
(%

)

0%

25%

50%

75%

100%

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Preprocessing HHH & HHN HNN NNN

(b) Epyc

Figure 7.5: Lotus execution breakdown (numbers on each bar are in seconds)

0.1 1.2 1.8 4.5

86.0

14.9 13.1

53.0

68.8 66.7

9.6 2.4 5.5 10.4

10.5

15.0
2.7

9.4

8.7 10.1

Pe
rc

en
ta

ge
 o

f T
ri

an
gl

es

0%

25%

50%

75%

100%

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

HHH & HHN HNN NNN

Figure 7.6: Contribution of triangles

19.4

41.4

28.1

51.8

92.4

36.4

59.8 58.4 55.6 57.8

80.6 58.6 71.9 48.2 7.6 63.6 40.2 41.6 44.5 42.3

Pe
rc

en
ta

ge
 o

f E
dg

es

0%

25%

50%

75%

100%

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

HE NHE

Figure 7.7: Percentage of edges in HE and

NHE sub-graphs

tracts dense flipped blocks 6.

2. Graphs that have a very small number of very high-degree hubs, where the For-

ward algorithm is effective even without degree ordering. In processing low-

degree vertices of these graphs, two types of memory accesses are performed:

(i) Accesses to neighbour list of hub vertices that are easily maintained in the cache

as hubs are rare but are accessed frequently (since they are neighbours to a great

percentage of vertices), and

(ii) Accesses to neighbour list of low-degree neighbours that a good spatial locality

(which usually exists in graphs before degree reordering, especially in LWA graphs

as a result of applying Layered Label Propagation [25]) makes the random memory

accesses to be mostly hit in cache (as the spatial locality facilitates consecutive IDs

to neighbours and necessitates consecutive processing of low-degree neighbours).

For these graphs, it is necessary to check the degree distribution of the graph at

the start of TC and to apply the Forward or edge-iterator algorithms if the graph

98 7.6. Evaluation

is not skewed enough. To that end, GAP uses the average degree of the graph and

a sampling mechanism to compare the average and median degree of vertices.

7.6.5 Topology Data Size

Table 7.5 compares size of topology data in CSX format and Lotus. Since the Forward

algorithm (Algorithm 6) uses only half of the edges, we have calculated the sizes of CSX

edges and CSX without symmetric edges.

Dataset CSX Edges (GB) CSX (GB) Lotus (GB) Growth (%)

LJGrp 0.4 0.5 0.6 28.8

Twtr10 1.0 1.1 1.3 10.4

Twtr 1.8 2.0 1.8 -8.9

TwtrMpi 4.5 4.8 4.3 -10.8

Frndstr 6.7 7.2 7.7 6.7

SK 6.8 7.2 5.6 -21.6

WbCc 7.2 7.9 7.3 -6.8

UKDls 12.9 13.7 12.1 -11.9

UU 17.4 18.4 15.7 -14.5

UKDmn 12.3 13.1 11.5 -12.0

Table 7.5: Size of topology data (Gigabytes)

Lotus affects the size of topology data in 3 ways:

• The HE and NHE sub-graphs require an index array each, adding 8(|V|+ 1) Bytes.

• Adding the H2H bit array, of fixed size (256 Megabytes).

• Reducing the size of hub IDs, which saves 2 bytes per edge in the HE sub-graph.

For graph datasets like SK-Domain where Lotus collects a greater number of edges as

hub edges, the topology size is reduced more as HE size is reduced.

Table 7.5 shows that, on average, Lotus reduces size of topology data by 4.1%.

Independently of reducing size, only a subset of the topology data is accessed in each

phase, resulting in smaller working sets.

7.6.6 H2H Bit Array

H2H is a dense triangular adjacency array that lists edges between a hub and its hub

neighbours with lower IDs. The first column of Table 7.6 shows that the density of H2H

(fraction of non-zero bits) is between 0.2% and 15.3%.

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 99

We also measured how many 64-byte aligned blocks of H2H contain 512 zero bits

(Table 7.6, column 3). In web graphs, 75–95% of H2H blocks contain no edges. Edges

are, thus, tightly packed in cache blocks, which implies that hubs in web graphs are

mostly connected to a number of hubs as we know web graphs have a small number

of hubs (Section 6.4.5). In contrast, social networks exhibit a different behavior where

5–62% of the blocks are zero that shows edges are thus more dispersed throughout H2H.

Dataset H2H Density (%) H2H Zero Cachelines (%)

LJGrp 0.20 62.51

Twtr10 2.83 5.72

Twtr 2.05 8.60

TwtrMpi 2.73 9.89

Frndstr 0.29 36.94

SK 1.04 91.74

WbCc 15.26 74.60

UKDls 2.56 93.31

UU 0.17 91.45

UKDmn 0.15 95.15

Table 7.6: Lotus H2H bit array characteristics

To have a better understanding of how H2H is placed in cache, we measure how

many accesses to H2H are satisfied by selecting the most frequently accessed cache-

lines. To this end, we sort cachelines based on how frequently they are accessed and we

calculate the partial sum of their accesses.

Figure 7.8 shows that by storing one million cachelines of H2H in cache, more than

90% of accesses to H2H are satisfied. In other words, 64 Megabytes of cache space

suffices to satisfy 90% of accesses to H2H.

This shows that 90% of (h1, h2) pairs produced in Line 5 of Algorithm 8 access only

25% of H2H cachelines. In other word, accesses to the H2H sub-graph benefit from a

high level of locality.

While using a hash table can be seen as an option for implementing H2H, Figure 7.8

shows that the high level of locality in memory accesses to H2H makes it suboptimal

to use a hash table for H2H. A hashing mechanism imposes more instruction count per

memory access, a higher memory footprint, and a higher preprocessing time.

100 7.6. Evaluation

0 0.5M 1M 1.5M 2M 2.5M 3M 3.5M 4M
0

20

40

60

80

100

LJGrp
Twtr10
Twtr
TwtrMpi
Frndstr
SK
WbCc
UKDls
UU
UKDmn

Cachelines

H
it

 A
cc

es
se

s
(%

)

Figure 7.8: Percentage of accumulative memory accesses to most frequently accessed

cachelines of H2H (M: Million)

7.6.7 Squared Edge Tiling

In Section 7.5.5, we introduced the squared edge tiling partitioning policy to provide

better load balance in processing HHH and HHN triangles in Lotus algorithm. Lotus

applies squared edge tiling for vertices with degree greater than 512 and divides the

total work of each vertex between p = 2 ∗ #threads partitions.

Table 7.7 shows the average idle time of threads in the first step of Lotus for two par-

titioning policies: edge balanced partitioning [153, 173] and squared edge tiling, when

running on the SkyLakeX machine. Edge balanced divides edges into 256 ∗ #threads

partitions. On average, squared edge tiling provides 2.7× speedup in processing HHH

and HHN triangles.

Dataset Edge Balanced (%) Squared Edge Tiling (%)

Twtr10 32.1 1.0

TwtrMpi 32.6 0.7

SK 13.6 3.1

WbCc 83.3 1.3

UKDls 41.8 3.3

Table 7.7: Average idle time in percent of total execution time [SkyLakeX]

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 101

7.7 Further Related Works

7.7.1 TC History

Itai and Rodeh [81, 82] use rooted spanning tree for TC. AYZ algorithm [3] provides

better computation complexity (O(|E|1.41)) in counting triangles of sparse graphs. It

uses matrix multiplication for triangles formed by high-degree vertices and for trian-

gles made by at least one low-degree vertex, AYZ algorithm acts like the node iterator

algorithm (Section 7.2.2) and finds the directed paths of length 2 and checks if their

endpoints are connected by an edge.

In addition to the 3 algorithms explained in Section 7.2.2, Schank and Wagner [138]

present 3 improvements:

• Node-iterator-core algorithm prioritizes vertices with smaller degree and removes

the vertex after processing,

• Edge-iterator-hashed algorithm uses a hash container to identify the common neigh-

bours of the endpoints of each node, and

• Forward-hashed algorithm uses a hash container for finding common neighbours.

Latapy [106] presents the new-vertex-listing algorithm to improve the node iterator

algorithm for high-degree vertices. For each vertex, it iterates over all its neighbours

and finds the common neighbours using a bitmap. Based on this, Latapy presents the

new-listing as an improvement to the AYZ algorithm.

Lotus makes several benefits from these algorithms:

• Similar to AYZ and new-listing, Lotus differentiates between hub and non-hub

vertices, however, Lotus counts a triangle as hub triangle if it has at least one hub

vertex, as the main target of Lotus is to prevent accessing hub edges when it is not

required.

• Lotus uses a bitmap array like the new-vertex-listing algorithm does. However, Lo-

tus does not use it for presenting edges of only a vertex, but for all edges between

hubs.

• Lotus has also similarities with the node-iterator-core algorithm as Lotus (1) counts

triangles of hubs, (2) removes hubs and their edges from the graph (as they are not

present in the NHE sub-graph), and (3) counts triangles between non-hub vertices

in the NHE sub-graph.

102 7.8. Conclusion and Further Applications

7.7.2 Approximate and Streaming TC

Approximate and streaming TC has also been studied in the literature such as [15, 34,

84, 144, 157]. The Lotus algorithm can be used to accelerate counting hub triangles of a

streaming graph and also to improve its precision.

We know hubs create a large percentage of total triangles (Sections 7.3.4 and 7.6.3)

and therefore in a streaming context, Lotus stores the H2H bit array in the memory and

accelerates processing of hub edges that are streamed in.

7.7.3 Improvements to TC and Forward Algorithm

Using hash maps for accelerating neighbour matching has been studied in some works

such as [106,144]. In this context, using binary search has been proposed in [62] and [70]

deploys branch-free binary search [89,93]. [76] decides between merge-based search and

binary search by considering degree of vertices.

[55] improves TC by removing vertices with degree 1 (that cannot shape a triangle)

from the graph and by ordering vertices of the same degree based on their connection

to hub vertices. [68] reduces branch misses by using radix binning. Fast (but with more

memory complexity) common neighbour counting through iterating over all wedges

is studied in [4]. TC has been one of the problems pursued by the Graph Challenge

and [135] surveys a number of TC studies.

7.7.4 Distributed and GPU-based TC

Distributed TC has been considered in studies such as [7, 8, 168], and GPU-based TC

in [21,50,62,70,76,167]. Patric [7] presents multiple types of partitioning for distributed

TC and also a dynamic load balancing mechanism [8]. [167] studies block-based parti-

tioning in TC. An evaluation of set intersection techniques has been studied in [17].

7.8 Conclusion and Further Applications

This chapter studied behaviours of real-world graphs with skewed degree distribution

in triangle counting and explains that the large fraction of edges connected to hubs

suffer from low reuse.

We introduced the LOTUS algorithm based on common features of power-law graphs.

Lotus processes hub edges separately from non-hub edges, which allows Lotus to count

Chapter 7. LOTUS: Locality Optimizing Triangle Counting 103

triangles in 3 steps. In each step, Lotus optimizes locality by concentrating random

memory accesses on a data structure that contains more specific data in a much smaller

size.

The evaluation shows that Lotus is 2.2–5.5× faster than previous works.

We propose the following extensions as future work:

• TC is the simplest form of the k-clique counting problem. We anticipate that the

skewed statistics on triangles containing hubs will become even more skewed for

larger cliques. So, Lotus can be applied for counting larger cliques and identifying

the maximum clique algorithms of a power-law graph.

• Lotus improves locality in counting HNN triangles by reducing the size of topol-

ogy data and avoiding interleaving hub and non-hub edges; however, locality of

HNN may be further improved by applying blocking strategies [79] to limit do-

main of random accesses.

• Creating multiple HE sub-graphs may improve performance further, especially

in graphs with many high-degree vertices (Section 7.6.4). It is an open question

whether recognizing a higher number of distinct vertex types (two kinds of hubs

and non-hubs) creates further opportunities to prune fruitless searches during

HNN and NNN search.

Chapter 8

Conclusion and Future Directions

8.1 Summary

In this thesis, the main goal is to exploit the implications of the structure of real-world

graph datasets with skewed-degree distribution to accelerate shared-memory graph al-

gorithms.

In Chapter 3, we introduced structural metrics and techniques, Cache Miss Rate Degree

Distribution, Effective Cache Size, Push Locality and Pull Locality, N2N AID Degree Distri-

bution, and Degree Range Decomposition, to investigate the features of power-law graphs

and the functionality of graph reordering algorithms for these graphs. We explained

that graph relabeling suffers from inherent limitations and cannot improve locality of

all vertices. We also explained that improving locality by deploying relabeling algo-

rithms reduces the Effective Cache Size.

In Chapter 4, we introduced the Uniform Memory Demands strategy that states dif-

ferent behaviours and properties of vertex classes/subgraphs may be exploited in order

to provide better performance. Instead of considering the graph in its general form, the

Uniform Memory Demands strategy concentrates on investigating the similar patterns

in different subgraphs in order to design data structures and algorithms that satisfy

these demands with the lowest overhead that consequently optimizes performance.

We used the Uniform Memory Demands strategy to design three algorithms:

• SAPCo Sort: In Chapter 5, we introduced the SAPCo Sort algorithm that assigns

different data structures and algorithms for different vertex classes to satisfy the

contrasting memory demands of the parallel counting sort algorithm. This makes

SAPCo the first parallel counting sort that is practically faster than comparison-

104

Chapter 8. Conclusion and Future Directions 105

based sorting algorithms. SAPCo outperforms the radix sort and sample sort by

4.0 and 1.7 times speedup, respectively.

SAPCo Sort shows that we need different types of memory accesses and their race

protection mechanisms; and, it is the dataset that specifies which one performs

better: while private memory allocation is helpful for highly-referenced memory

addresses, we skip the cost of aggregation and scattering (that grows with number

of processors/partitions) by deploying atomic memory accesses. In this way, the

Uniform Memory Demands strategy helps SAPCo to improve performance by

enhancing work-efficiency.

• iHTL: In Chapter 6, we introduced the iHTL algorithm that optimizes temporal

locality in processing in-hubs in a SpMV graph traversal. In processing incoming

edges to in-hubs of power-law graphs, we have a small number of destinations (in-

hubs); while, the source vertices are numerous. To deploy the Uniform Memory

Demands strategy, we dedicate cache to the destinations instead of sources by

traversing incoming edges to in-hubs in the push direction that results in 1.5–2.4

times speedup.

Unlike SAPCo, iHTL does not benefit from improved work-efficiency as we need

to merge buffers and to reset them in each iteration. However, by improving

locality through concentrating memory accesses to cache, iHTL hides the cost of

excess work. The excess work is in an order of #hubs · #threads, but iHTL improves

locality for incoming edges of hubs that are exponentially greater in count.

• LOTUS: In Chapter 7, we analyzed the memory accesses in Triangle Counting of

power-law graphs to identify contrasting behaviours of different subgraphs. We

used the Uniform Memory Demands strategy to introduce the LOTUS algorithm

that divides the execution time into three steps; in each step, random memory

accesses are concentrated on a small dataset that is easier to keep in cache. In this

way, Lotus presents 2.2–5.5 times speedup in comparison to previous works.

Lotus, provides better performance by improving locality and by dedicating cache

to different data structures during the execution instead of inefficiently keeping a

small percentage of data in cache for the whole duration of execution. Lotus also

introduces the Squared Edge Tiling technique that improves load balance.

106 8.2. Limitations & Dependencies

8.2 Limitations & Dependencies

We used the Uniform Memory Demands to design algorithms with better performance;

however, these algorithms have their limitations:

• Memory Overhead. As we explained in Section 5.4, Section 6.4, and Section 7.6,

SAPCo, iHTL, and Lotus may require more memory than their original algorithms.

Moreover, Lotus and iHTL require a preprocessing step to create a new graph

topology. While memory size is not a main concern, it can be a limiting factor,

especially, in streaming graph processing.

• Preprocessing Cost. The iHTL and Lotus algorithms require a preprocessing step

to form subgraphs. While this cost is compensated in the processing step, it is

useful to find a graph topology data structure that supports different structure-

aware algorithms. The first consequence of that topology data structure is re-

moving the preprocessing time; but, more important insights (about the relation

between graph algorithms and a graph topology that accelerates different graph

algorithms by acknowledging the contrasting memory demands and behaviours)

may be achieved as a result of that study.

• Being Specific to An Algorithm and Processing Environment. One advantage

of relabeling algorithms is that they are independent of graph algorithms. When

a graph dataset is relabelled by a reordering algorithm, we hope the relabeled

version is processed faster by different graph algorithms. In contrast, the Uniform

Memory Demands strategy optimizes the algorithms and not datasets. As a result,

the optimization is specific to the algorithm and/or to the processing environment

(shared memory, distributed memory, or GPU-based). Modifications on these two

factors may impose adjustments.

• Performance Speedup Dependency on The Architecture. Optimizing algorithms

based on the performance of different memory access types results in inherent lim-

itation to the features of the processing environments. As an example, if we have a

machine where atomic memory accesses are fast in comparison to regular memory

accesses, then buffer merging in iHTL (Section 6.3.4) may require adjustment. As

another example, the iHTL and Lotus algorithms facilitate speedups for a small

cache that is much faster than memory accesses. Consequently, the speedup may

reduce if most of random accessed data can be maintained in cache (Section 7.6.1)

Chapter 8. Conclusion and Future Directions 107

or if memory access time of cache hits is similar to that of cache misses.

This shows that we need to consider the effects of the architecture on the perfor-

mance as the structure-aware algorithms are experimentally designed based on the

current features and efficiency of the processing environments. Changes in these

factors may necessitate adjustments in the algorithms in order to deliver the best

performance.

8.3 Suggestions for Future Work

We have explained the direct usage of techniques introduced in each chapter in its

last section. In this section, we consider the future directions from a more general

perspective:

• Studying Other Algorithms & Other Processing Environments. In this thesis,

we showed that the structure of graph datasets is an effective factor to accelerate

shared-memory graph algorithms. However, contrasting demands and behaviours

in graph datasets may be used to accelerate graph processing in other environ-

ments based on the main performance bottleneck of those environments.

In Section 2.4.3, we reviewed some partitioning algorithms that exploit the struc-

ture of the power-law graphs; however, more investigation is required. In distributed-

memory graph processing, communication overhead and load-balance heavily af-

fect the performance. By investigating the effects of the structure of power-law

graphs on these factors, we achieve new insights for designing structure-aware

algorithms for distributed-memory environments.

By deploying GPUs, we are equipped with a high number of processors that is

more challenging to load-balance. On the other hand, the caching system is dif-

ferent from CPU-based graph processing and the GPU memory is much smaller

than CPU memory. So, it is more important to reduce GPU-CPU data transfer and

to use the GPU cache efficiently by studying the effects of power-law graphs and

designing structure-aware algorithms that improve memory locality.

Some techniques introduced in this thesis may directly be applicable in distributed

and/or GPU-based computing. As an example, iHTL and Lotus provide finer

granularity by dividing the total work into multiple steps; this provides better

load-balance in distributed and GPU environments.

108 8.3. Suggestions for Future Work

• Investigating Other Features of The Power-Law Graphs. The Uniform Mem-

ory Demands strategy works, mainly, based on the skewed degree distribution of

power-law graphs. However, these graphs have other unique features that can be

exploited to accelerate graph algorithms.

As an example, power-law graphs have a special connectivity as the giant compo-

nent in these graphs contains a very large percentage of vertices and edges. This

feature has been used in the Thrifty Label Propagation algorithm [97] to intro-

duce a Connected Components algorithm that traverses only 1.4% of edges as a

result of not processing vertices connected to the giant component. Similarly, the

MASTIFF algorithm [99] exploits the connectivity of power-law graphs to intro-

duce a Minimum Spanning Forest algorithm that skips processing vertices in the

giant component and by allowing other vertices to attach themselves to the giant

component.

• Improving The Requirements of Graph Processing Studies. In this thesis, we

have used publicly available real-world power-law graph datasets that include web

graphs and social networks. However, this study can be extended by investigating

other graph datasets to purify the insights and to find more realistic analysis.

On the other hand, most of real-world datasets are old (e.g., the latest Twit-

ter graph is from 2010), and synthetic datasets do not represent the real-world

graphs (in terms of structural properties of the graph such as degree-distribution

skewedness and degree decomposition) well. So, a study on differences of syn-

thetic and real-world graphs will result in better synthetic datasets, especially

by deploying new metrics and novel features and differences between real-world

graph types that were introduced in Section 3.5.

We need more graph-specific simulation techniques and software to be able to

investigate different aspects of execution of a graph algorithm. The large overhead

of current simulation techniques (that is usually performed on a single machine)

prevents simulating large graphs and complicated graph algorithms through cycle-

accurate micro-architectural simulation.

• Structure-Aware Approximation. The results of this thesis open new perspectives

on approximate and transprecise graph processing [16, 160]: Do different vertex

classes and/or subgraphs require different precision and/or convergence criteria?

Is it possible to use the structure of graphs to improve accuracy or performance?

Chapter 8. Conclusion and Future Directions 109

• Structure-Aware Automatic Code Optimization. The Uniform Memory Demands

strategy can be used to improve automatic code optimization: How can we use

this strategy to automatically generate optimized code by (i) identifying the con-

trasting memory behaviours of different parts of the datasets (vertices, edges, or

sub-graphs), and by (ii) deploying suitable mechanisms to satisfy the memory de-

mands of each part without sacrificing performance?

• Auxiliary Data Structure. The preprocessing step in the iHTL and Lotus algo-

rithms includes a graph relabeling process that changes the IDs of vertices and

their neighbours. This shows that we need to create a more-structured data from

the amorphous data structure of the raw graph. In other words, we use an auxil-

iary data structure to accelerate the graph processing.

Now, the question is how to create an optimal auxiliary data structure with the

lowest memory/time overhead while preserving the Uniform Memory Demands

strategy? Is it necessary to embed data from the whole graph into this data struc-

ture? How to create this auxiliary data structure without relabeling the whole

graph? Can we create an auxiliary data structure that accelerates a family of graph

algorithms?

Appendix A

Experimental Setup

A.1 Machines

For the experiments in this thesis, we use 2 machines, listed in Table A.1. The machines

use CentOS 7.

SkyLakeX SkyLakeX-2 Epyc

CPU Model Intel Xeon Gold 6130 Intel Xeon Gold 6126 AMD Epyc 7702

CPU Frequency 3.7 / 2.10 GHz 3.7 / 2.6 GHz 3.35 / 2.0 GHz

Sockets 2 2 2

NUMA Nodes 2 2 8

Total CPU Cores 32 24 128

Hyperthreading No No No

Total Threads 32 24 128

L1 Cache 32 KB / 1 core 32 KB / 1 core 32 KB / 1 core

L2 Cache 1 MB / 1 core 1 MB / 1 core 512 KB / 1 core

L3 Cache 22 MB / 16 cores 20 MB / 12 cores 16 MB / 4 cores

Total L3 Cache 44 MB 40 MB 512 MB

Total Memory 768 GB 1,584 GB 2,048 GB

Table A.1: Machines

110

Appendix A. Experimental Setup 111

Dataset Name Type Source |V| (M) |E| (B) |ESym| (B)

WWiki War Wikipedia KG KN 2 0.04 0.05

LJ LiveJournal Links SN KN 5 0.10 0.10

LJGrp LiveJournal SN KN 7 0.22 0.22

Twtr10 Twitter 2010 SN NR 21 0.26 0.53

Twtr Twitter SN NR 28 0.53 0.96

WebB WebBase-2001 WG LWA 114 1.02 1.71

TwtrMpi Twitter-MPI SN NR 41 1.47 2.41

Frndstr Friendster SN NR 65 1.81 3.61

SK SK-Domain WG LWA 50 1.95 3.64

WbCc Web-CC12 WG NR 89 2.04 3.87

UKDls UK-Delis WG LWA 110 3.94 6.92

UU UK-Union WG LWA 133 5.51 9.36

UKDmn UK-Domain WG KN 105 6.60 6.60

ClWb9 ClueWeb09 WG NR 1.7K 7.9 15.6

ClWb12 ClueWeb12 WG LWA 978 42.6 74.7

UK14 UK-2014 WG LWA 787 47.6 84.9

WDC14 WDC 2014 WG WDC 1,724 64.4 123.8

EU15 EU Domains WG LWA 1,071 91.8 161.1

Table A.2: Datasets

A.2 Datasets

Table A.2 shows the datasets and their sources: “Konect”1 (KN) [23, 103, 121], “Net-

workRepository”2 (NR) [26, 36, 39, 131, 147], “Laboratory for Web Algorithmics”3 (LWA) [23–

26, 104], and “Web Data Commons”4 (WDC) [107, 118, 119]. Graph types are Knowledge

Graph (KG), Social Network (SN), and Web Graph (WG).

In Table A.2, the numbers of vertices (|V|) are in millions, and the numbers of edges

of the graph (|E|) are in billions, counted after removing zero-degree vertices. The

column |ESym| shows the numbers of edges of the symmetric graphs in billions. We use

the CSX representation for the undirected graphs undirected graphs (Section 2.1), and

in this representation, each edge of the graph appears two times (once in the neighbour

1http://konect.cc
2http://networkrepository.com
3http://law.di.unimi.it
4http://webdatacommons.org/hyperlinkgraph/

http://konect.cc/networks/wikipedia_link_war/
http://konect.cc/networks/livejournal-links/
http://konect.cc/networks/livejournal-groupmemberships/
http://networkrepository.com/soc-twitter-2010.php
networkrepository.com/soc-twitter.php
http://law.di.unimi.it/webdata/webbase-2001/
http://networkrepository.com/soc-twitter-mpi-sws.php
http://networkrepository.com/soc-friendster.php
http://law.di.unimi.it/webdata/sk-2005
http://networkrepository.com/web-cc12-hostgraph.php
http://law.di.unimi.it/webdata/uk-2007-02/
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
http://konect.cc/networks/dimacs10-uk-2007-05/
http://networkrepository.com/web-ClueWeb09.php
https://law.di.unimi.it/webdata/clueweb12/
http://law.di.unimi.it/webdata/uk-2014/
http://webdatacommons.org/hyperlinkgraph/2014-04/download.html
https://law.di.unimi.it/webdata/eu-2015/
http://konect.cc
http://networkrepository.com
http://law.di.unimi.it
http://webdatacommons.org/hyperlinkgraph/

112 A.3. Implementation and Source Code

list of each endpoint).

As graph datasets have fewer than 232 vertices, 4 Bytes IDs are assigned to vertices

and each element of the edges array has a size of 4 Bytes. The graphs in this study have

up to hundreds of billions edges and we use 8 Bytes for indexing the edges array. So,

each element of the offsets array has a size of 8 Bytes.

A.3 Implementation and Source Code

We have implemented our algorithms in the C language using the OpenMP API [46] and

pthread. We also use libnuma, and papi [156] libraries. We use the interleaved NUMA

memory policy and the gcc-9.2 used as compiler with -O3 flag.

The source code and further discussions are available online on https://blogs.qub.

ac.uk/GraphProcessing/LaganLighter.

https://blogs.qub.ac.uk/GraphProcessing/LaganLighter
https://blogs.qub.ac.uk/GraphProcessing/LaganLighter

References

[1] Emily E Ackerman, John F Alcorn, Takeshi Hase, and Jason E Shoemaker. A dual controllability anal-
ysis of influenza virus-host protein-protein interaction networks for antiviral drug target discovery.
BMC bioinformatics, 20(1):1–13, 2019. doi:10.1186/s12859-019-2917-z.

[2] Deepak Ajwani, Ulrich Meyer, and Vitaly Osipov. Improved external memory bfs implementations. In
Proceedings of the Meeting on Algorithm Engineering and Expermiments, page 3–12, USA, 2007. Society for
Industrial and Applied Mathematics. URL: https://dl.acm.org/doi/10.5555/2791188.2791189.

[3] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. Algorithmica,
17:209–223, 1997. doi:10.1007/BF02523189.

[4] Xiaojing An, Kasimir Gabert, James Fox, Oded Green, and David A. Bader. Skip the intersection:
Quickly counting common neighbors on shared-memory systems. In 2019 IEEE High Performance Ex-
treme Computing Conference (HPEC), pages 1–7, USA, 2019. IEEE. doi:10.1109/HPEC.2019.8916307.

[5] Renzo Angles. A comparison of current graph database models. In 2012 IEEE 28th International
Conference on Data Engineering Workshops, pages 171–177, 2012. doi:10.1109/ICDEW.2012.31.

[6] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu Iwamura. Rabbit
order: Just-in-time parallel reordering for fast graph analysis. In 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 22–31, USA, 2016. IEEE. doi:10.1109/IPDPS.2016.
110.

[7] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. Patric: A parallel algorithm for counting
triangles in massive networks. In Proceedings of the 22nd ACM International Conference on Information
and Knowledge Management, CIKM ’13, page 529–538, New York, NY, USA, 2013. Association for
Computing Machinery. doi:10.1145/2505515.2505545.

[8] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. A fast parallel algorithm for counting
triangles in graphs using dynamic load balancing. In 2015 IEEE International Conference on Big Data
(Big Data), pages 1839–1847, USA, 2015. IEEE. doi:10.1109/BigData.2015.7363957.

[9] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. Engineering in-place (shared-
memory) sorting algorithms. ACM Trans. Parallel Comput., 9(1), jan 2022. doi:10.1145/3505286.

[10] Vignesh Balaji and Brandon Lucia. When is graph reordering an optimization? studying the effect
of lightweight graph reordering across applications and input graphs. In 2018 IEEE International
Symposium on Workload Characterization (IISWC), pages 203–214, 2018. doi:10.1109/IISWC.2018.
8573478.

[11] Reet Barik, Marco Minutoli, Mahantesh Halappanavar, Nathan R. Tallent, and Ananth Kalya-
naraman. Vertex reordering for real-world graphs and applications: An empirical evaluation.
In 2020 IEEE International Symposium on Workload Characterization (IISWC), pages 240–251, 2020.
doi:10.1109/IISWC50251.2020.00031.

[12] Abanti Basak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie, Li Zhao, Xiaowei Jiang, and Yuan
Xie. Analysis and optimization of the memory hierarchy for graph processing workloads. In 2019
IEEE International Symposium on High Performance Computer Architecture (HPCA), pages 373–386, 2019.
doi:10.1109/HPCA.2019.00051.

[13] Scott Beamer, Krste Asanović, and David Patterson. Direction-optimizing breadth-first search. In Pro-
ceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis,
SC ’12, Washington, DC, USA, 2012. IEEE Computer Society Press. doi:10.1109/SC.2012.50.

[14] Scott Beamer, Krste Asanovic, and David A. Patterson. The GAP benchmark suite. CoRR,
abs/1508.03619:1–16, 2015. arXiv:1508.03619.

113

https://doi.org/10.1186/s12859-019-2917-z
https://dl.acm.org/doi/10.5555/2791188.2791189
https://doi.org/10.1007/BF02523189
https://doi.org/10.1109/HPEC.2019.8916307
https://doi.org/10.1109/ICDEW.2012.31
https://doi.org/10.1109/IPDPS.2016.110
https://doi.org/10.1109/IPDPS.2016.110
https://doi.org/10.1145/2505515.2505545
https://doi.org/10.1109/BigData.2015.7363957
https://doi.org/10.1145/3505286
https://doi.org/10.1109/IISWC.2018.8573478
https://doi.org/10.1109/IISWC.2018.8573478
https://doi.org/10.1109/IISWC50251.2020.00031
https://doi.org/10.1109/HPCA.2019.00051
https://doi.org/10.1109/SC.2012.50
http://arxiv.org/abs/1508.03619

114 References

[15] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient semi-streaming algorithms
for local triangle counting in massive graphs. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’08, page 16–24, New York, NY, USA, 2008.
Association for Computing Machinery. doi:10.1145/1401890.1401898.

[16] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient algorithms for large-scale
local triangle counting. ACM Trans. Knowl. Discov. Data, 4(3), October 2010. doi:10.1145/1839490.
1839494.

[17] Christos Bellas and Anastasios Gounaris. Exploiting gpus for fast intersection of large sets. Informa-
tion Systems, page 101992, 2022. doi:https://doi.org/10.1016/j.is.2022.101992.

[18] Jonathan W. Berry, Bruce Hendrickson, Simon Kahan, and Petr Konecny. Software and algorithms
for graph queries on multithreaded architectures. In 2007 IEEE International Parallel and Distributed
Processing Symposium, pages 1–14, 2007. doi:10.1109/IPDPS.2007.370685.

[19] Kristof Beyls and Erik H. D’Hollander. Reuse distance as a metric for cache behavior. In In Proceedings
of the IASTED Conference on Parallel and Distributed Computing and Systems, pages 617–662, 2001. URL:
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.8798.

[20] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu,
Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, aug 2011. doi:10.1145/2024716.2024718.

[21] Mauro Bisson and Massimiliano Fatica. Static graph challenge on gpu. In 2017 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pages 1–8, USA, 2017. IEEE. doi:10.1109/HPEC.2017.
8091034.

[22] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008,
oct 2008. doi:10.1088/1742-5468/2008/10/p10008.

[23] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubicrawler: A scalable fully
distributed web crawler. Softw. Pract. Exper., 34(8):711–726, July 2004. doi:10.1002/spe.587.

[24] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. Bubing: Massive crawling for
the masses. ACM Trans. Web, 12(2), June 2018. doi:10.1145/3160017.

[25] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label propagation: A
multiresolution coordinate-free ordering for compressing social networks. In Proceedings of the 20th
International Conference on World Wide Web, WWW ’11, page 587–596, New York, NY, USA, 2011.
Association for Computing Machinery. doi:10.1145/1963405.1963488.

[26] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: Compression techniques. In Proceed-
ings of the 13th International Conference on World Wide Web, WWW ’04, page 595–602, New York, NY,
USA, 2004. Association for Computing Machinery. doi:10.1145/988672.988752.

[27] Stephen P. Borgatti, Ajay Mehra, Daniel J. Brass, and Giuseppe Labianca. Network analysis in the
social sciences. Science, 323(5916):892–895, 2009. doi:10.1126/science.1165821.

[28] Gergana Bounova and Olivier De Weck. Overview of metrics and their correlation patterns for
multiple-metric topology analysis on heterogeneous graph ensembles. Physical Review E, 85(1):016117,
2012. doi:10.1103/PhysRevE.85.016117.

[29] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(1):107–117, 1998. Proceedings of the Seventh International
World Wide Web Conference. doi:10.1016/S0169-7552(98)00110-X.

[30] Gerth Stølting Brodal, Rolf Fagerberg, and Kristoffer Vinther. Engineering a cache-oblivious sorting
algorithm. ACM J. Exp. Algorithmics, 12, jun 2008. doi:10.1145/1227161.1227164.

[31] Anna D Broido and Aaron Clauset. Scale-free networks are rare. Nature communications, 10(1):1–10,
2019. doi:10.1038/s41467-019-08746-5.

[32] Aydin Buluç and Kamesh Madduri. Parallel breadth-first search on distributed memory systems.
In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, New York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/
2063384.2063471.

https://doi.org/10.1145/1401890.1401898
https://doi.org/10.1145/1839490.1839494
https://doi.org/10.1145/1839490.1839494
https://doi.org/https://doi.org/10.1016/j.is.2022.101992
https://doi.org/10.1109/IPDPS.2007.370685
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.8798
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/HPEC.2017.8091034
https://doi.org/10.1109/HPEC.2017.8091034
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1002/spe.587
https://doi.org/10.1145/3160017
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/988672.988752
https://doi.org/10.1126/science.1165821
https://doi.org/10.1103/PhysRevE.85.016117
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1145/1227161.1227164
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1145/2063384.2063471
https://doi.org/10.1145/2063384.2063471

References 115

[33] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0. SIGARCH Comput. Archit.
News, 25(3):13–25, June 1997. doi:10.1145/268806.268810.

[34] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Christian
Sohler. Counting triangles in data streams. In Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’06, page 253–262, New York, NY, USA,
2006. Association for Computing Machinery. doi:10.1145/1142351.1142388.

[35] Ronald S Burt. Structural holes and good ideas. American journal of sociology, 110(2):349–399, 2004.
doi:10.1086/421787.

[36] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P. Gummadi. Measuring user
influence in twitter: The million follower fallacy. In ICWSM, volume 14, Washington DC, USA, May
2010. URL: https://ojs.aaai.org/index.php/ICWSM/article/view/14033.

[37] Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra, and Mithuna Thottethodi.
Nonlinear array layouts for hierarchical memory systems. In Proceedings of the 13th International
Conference on Supercomputing, ICS ’99, pages 444–453, New York, NY, USA, 1999. ACM. doi:10.
1145/305138.305231.

[38] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. PowerLyra: Differentiated graph com-
putation and partitioning on skewed graphs. In Proceedings of the Tenth European Conference on
Computer Systems, EuroSys ’15, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2741948.2741970.

[39] Charles L Clarke, Nick Craswell, and Ian Soboroff. Overview of the trec 2009 web track. Technical
report, DTIC Document, 2009. URL: https://apps.dtic.mil/sti/citations/ADA517817.

[40] Thayne Coffman, Seth Greenblatt, and Sherry Marcus. Graph-based technologies for intelligence
analysis. Commun. ACM, 47(3):45–47, March 2004. doi:10.1145/971617.971643.

[41] Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineering, 11:29–
42, 2009. doi:10.1109/MCSE.2009.120.

[42] Richard Cole and Vijaya Ramachandran. Resource oblivious sorting on multicores. ACM Trans.
Parallel Comput., 3(4), mar 2017. doi:10.1145/3040221.

[43] James S. Coleman. Social capital in the creation of human capital. American Journal of Sociology,
94:S95–S120, 1988. URL: https://www.jstor.org/stable/2780243.

[44] Guojing Cong and Tong Wen. Locality behavior of parallel and sequential algorithms for irregular
graph problems. In Proceedings of the 19th IASTED International Conference on Parallel and Distributed
Computing and Systems, PDCS ’07, page 391–397, USA, 2007. ACTA Press. URL: https://dl.acm.
org/doi/10.5555/1647539.1647611.

[45] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of
the 1969 24th National Conference, ACM ’69, page 157–172, New York, NY, USA, 1969. Association for
Computing Machinery. doi:10.1145/800195.805928.

[46] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard api for shared-memory pro-
gramming. IEEE Computational Science and Engineering, 5(1):46–55, 1998. doi:10.1109/99.660313.

[47] Antonio del Sol, Hirotomo Fujihashi, and Paul O’Meara. Topology of small-world networks
of protein–protein complex structures. Bioinformatics, 21(8):1311–1315, 01 2005. doi:10.1093/
bioinformatics/bti167.

[48] Camil Demetrescu, David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic Graph Algorithms,
volume 1, chapter 9. CRC Press, 2009. doi:10.1201/9781584888239-c9.

[49] Peter J. Denning and Craig H. Martell. Great Principles of Computing. The MIT Press, 2015. URL:
https://mitpress.mit.edu/9780262527125/great-principles-of-computing/.

[50] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. Multi-threaded sparse matrix-
matrix multiplication for many-core and GPU architectures. CoRR, abs/1801.03065:24, 2018. arXiv:
1801.03065.

[51] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient parallel graph algorithms
can be fast and scalable. ACM Trans. Parallel Comput., 8(1), April 2021. doi:10.1145/3434393.

[52] C. Ding and K. Kennedy. Improving cache performance in dynamic applications through data and
computation reorganization at run time. In Proc. of the ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pages 229–241, 1999. doi:10.1145/301631.301670.

https://doi.org/10.1145/268806.268810
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1086/421787
https://ojs.aaai.org/index.php/ICWSM/article/view/14033
https://doi.org/10.1145/305138.305231
https://doi.org/10.1145/305138.305231
https://doi.org/10.1145/2741948.2741970
https://apps.dtic.mil/sti/citations/ADA517817
https://doi.org/10.1145/971617.971643
https://doi.org/10.1109/MCSE.2009.120
https://doi.org/10.1145/3040221
https://www.jstor.org/stable/2780243
https://dl.acm.org/doi/10.5555/1647539.1647611
https://dl.acm.org/doi/10.5555/1647539.1647611
https://doi.org/10.1145/800195.805928
https://doi.org/10.1109/99.660313
https://doi.org/10.1093/bioinformatics/bti167
https://doi.org/10.1093/bioinformatics/bti167
https://doi.org/10.1201/9781584888239-c9
https://mitpress.mit.edu/9780262527125/great-principles-of-computing/
http://arxiv.org/abs/1801.03065
http://arxiv.org/abs/1801.03065
https://doi.org/10.1145/3434393
https://doi.org/10.1145/301631.301670

116 References

[53] Chen Ding and Yutao Zhong. Reuse distance analysis, 2001. URL: http://hdl.handle.net/1802/
415.

[54] Chen Ding and Yutao Zhong. Predicting whole-program locality through reuse distance analysis.
SIGPLAN Not., 38(5):245–257, May 2003. doi:10.1145/781131.781159.

[55] Evan Donato, Ming Ouyang, and Cristian Peguero-Isalguez. Triangle counting with a multi-core
computer. In 2018 IEEE High Performance extreme Computing Conference (HPEC), pages 1–7, USA,
2018. IEEE. doi:10.1109/HPEC.2018.8547540.

[56] Bin Dong, Surendra Byna, and Kesheng Wu. SDS-Sort: Scalable dynamic skew-aware parallel sorting.
In Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’16, page 57–68, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2907294.2907300.

[57] Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers hidden thematic layers in
the world wide web. Proceedings of the National Academy of Sciences of the United States of America,
99:5825–5829, 2002.

[58] David Ediger, Rob McColl, Jason Riedy, and David A. Bader. Stinger: High performance data struc-
ture for streaming graphs. In 2012 IEEE Conference on High Performance Extreme Computing, pages 1–5,
2012. doi:10.1109/HPEC.2012.6408680.

[59] Priyank Faldu, Jeff Diamond, and Boris Grot. A closer look at lightweight graph reordering. In
2019 IEEE International Symposium on Workload Characterization (IISWC), pages 1–13. IEEE, 2019. doi:
10.1109/IISWC47752.2019.9041948.

[60] Lisa Fleischer, Bruce Hendrickson, and Ali Pinar. On identifying strongly connected components in
parallel. In Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed Processing, IPDPS
’00, page 505–511, Berlin, Heidelberg, 2000. Springer-Verlag. doi:10.1007/3-540-45591-4_68.

[61] Brooke Foucault Welles, Anne Van Devender, and Noshir Contractor. Is a Friend a Friend? Investigating
the Structure of Friendship Networks in Virtual Worlds, page 4027–4032. Association for Computing
Machinery, New York, NY, USA, 2010. doi:10.1145/1753846.1754097.

[62] James Fox, Oded Green, Kasimir Gabert, Xiaojing An, and David A. Bader. Fast and adaptive list
intersections on the gpu. In 2018 IEEE High Performance extreme Computing Conference (HPEC), pages
1–7, USA, 2018. IEEE. doi:10.1109/HPEC.2018.8547759.

[63] W. D. Frazer and A. C. McKellar. SampleSort: A sampling approach to minimal storage tree sorting.
J. ACM, 17(3):496–507, jul 1970. doi:10.1145/321592.321600.

[64] John R. Gilbert, Steve Reinhardt, and Viral B. Shah. High-performance graph algorithms from parallel
sparse matrices. In Bo Kågström, Erik Elmroth, Jack Dongarra, and Jerzy Waśniewski, editors, Applied
Parallel Computing. State of the Art in Scientific Computing, pages 260–269, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg. doi:10.1007/978-3-540-75755-9_32.

[65] John R Gilbert, Steve Reinhardt, and Viral B Shah. A unified framework for numerical and combina-
torial computing. Computing in Science & Engineering, 10(2):20–25, 2008. doi:10.1109/MCSE.2008.45.

[66] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali. Single machine
graph analytics on massive datasets using intel optane dc persistent memory. Proc. VLDB Endow.,
13(8):1304–1318, April 2020. doi:10.14778/3389133.3389145.

[67] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. PowerGraph:
Distributed graph-parallel computation on natural graphs. In Proceedings of the 10th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’12, page 17–30, USA, 2012. USENIX Asso-
ciation. URL: https://www.usenix.org/conference/osdi12/technical-sessions/presentation/
gonzalez.

[68] Oded Green, James Fox, Alex Watkins, Alok Tripathy, Kasimir Gabert, Euna Kim, Xiaojing An,
Kumar Aatish, and David A. Bader. Logarithmic radix binning and vectorized triangle counting.
In 2018 IEEE High Performance extreme Computing Conference (HPEC), pages 1–7, USA, 2018. IEEE.
doi:10.1109/HPEC.2018.8547581.

[69] Douglas Gregor and Andrew Lumsdaine. Lifting sequential graph algorithms for distributed-
memory parallel computation. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, page 423–437, New York,
NY, USA, 2005. Association for Computing Machinery. doi:10.1145/1094811.1094844.

http://hdl.handle.net/1802/415
http://hdl.handle.net/1802/415
https://doi.org/10.1145/781131.781159
https://doi.org/10.1109/HPEC.2018.8547540
https://doi.org/10.1145/2907294.2907300
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1109/IISWC47752.2019.9041948
https://doi.org/10.1109/IISWC47752.2019.9041948
https://doi.org/10.1007/3-540-45591-4_68
https://doi.org/10.1145/1753846.1754097
https://doi.org/10.1109/HPEC.2018.8547759
https://doi.org/10.1145/321592.321600
https://doi.org/10.1007/978-3-540-75755-9_32
https://doi.org/10.1109/MCSE.2008.45
https://doi.org/10.14778/3389133.3389145
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://doi.org/10.1109/HPEC.2018.8547581
https://doi.org/10.1145/1094811.1094844

References 117

[70] Chuangyi Gui, Long Zheng, Pengcheng Yao, Xiaofei Liao, and Hai Jin. Fast triangle counting on
gpu. In 2019 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7, USA, 2019.
IEEE. doi:10.1109/HPEC.2019.8916216.

[71] Hwansoo Han and Chau-Wen Tseng. Exploiting locality for irregular scientific codes. IEEE Transac-
tions on Parallel and Distributed Systems, 17(7):606–618, 2006. doi:10.1109/TPDS.2006.88.

[72] F. Harary and G. Gupta. Dynamic graph models. Math. Comput. Model., 25(7):79–87, apr 1997.
doi:10.1016/S0895-7177(97)00050-2.

[73] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauchwerger. KLA: A new algorithmic
paradigm for parallel graph computations. In Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation, PACT ’14, page 27–38, New York, NY, USA, 2014. ACM. doi:10.1145/
2628071.2628091.

[74] Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali. Ordered vs. unordered: A
comparison of parallelism and work-efficiency in irregular algorithms. In Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, PPoPP ’11, page 3–12, New York, NY,
USA, 2011. ACM. doi:10.1145/1941553.1941557.

[75] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient parallel graph exploration on multi-
core cpu and gpu. In 2011 International Conference on Parallel Architectures and Compilation Techniques,
pages 78–88, 2011. doi:10.1109/PACT.2011.14.

[76] Yang Hu, Hang Liu, and H. Howie Huang. Tricore: Parallel triangle counting on gpus. In SC18:
International Conference for High Performance Computing, Networking, Storage and Analysis, pages 171–
182, USA, 2018. IEEE. doi:10.1109/SC.2018.00017.

[77] David A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the
IRE, 40(9):1098–1101, 1952. doi:10.1109/JRPROC.1952.273898.

[78] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework for sparse
matrix kernels. The International Journal of High Performance Computing Applications, 18(1):135–158,
2004. arXiv:10.1177/1094342004041296.

[79] Eun-Jin Im and Katherine A Yelick. Optimizing sparse matrix vector multiplication on smp. In
Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, PPSC 1999, USA,
1999. SIAM. URL: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8485.

[80] Francois Irigoin and Rémi Triolet. Supernode partitioning. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’88, page 319–329, New York, NY,
USA, 1988. Association for Computing Machinery. doi:10.1145/73560.73588.

[81] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. In Proceedings of the Ninth
Annual ACM Symposium on Theory of Computing, STOC ’77, page 1–10, New York, NY, USA, 1977.
Association for Computing Machinery. doi:10.1145/800105.803390.

[82] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing,
7(4):413–423, 1978. doi:10.1137/0207033.

[83] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. High performance cache re-
placement using re-reference interval prediction (rrip). In Proceedings of the 37th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’10, page 60–71, New York, NY, USA, 2010. ACM.
doi:https://doi.org/10.1145/1815961.1815971.

[84] Madhav Jha, C. Seshadhri, and Ali Pinar. A space-efficient streaming algorithm for estimating transi-
tivity and triangle counts using the birthday paradox. ACM Trans. Knowl. Discov. Data, 9(3), February
2015. doi:10.1145/2700395.

[85] Yunlian Jiang, Eddy Z. Zhang, Kai Tian, and Xipeng Shen. Is reuse distance applicable to data locality
analysis on chip multiprocessors? In Rajiv Gupta, editor, Compiler Construction, pages 264–282, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/978-3-642-11970-5_15.

[86] U Kang, Duen Horng Chau, and Christos Faloutsos. Mining large graphs: Algorithms, inference,
and discoveries. In 2011 IEEE 27th International Conference on Data Engineering, pages 243–254, 2011.
doi:10.1109/ICDE.2011.5767883.

[87] U. Kang, Charalampos E. Tsourakakis, Ana Paula Appel, Christos Faloutsos, and Jure Leskovec.
Hadi: Mining radii of large graphs. ACM Trans. Knowl. Discov. Data, 5(2), feb 2011. doi:10.1145/
1921632.1921634.

https://doi.org/10.1109/HPEC.2019.8916216
https://doi.org/10.1109/TPDS.2006.88
https://doi.org/10.1016/S0895-7177(97)00050-2
https://doi.org/10.1145/2628071.2628091
https://doi.org/10.1145/2628071.2628091
https://doi.org/10.1145/1941553.1941557
https://doi.org/10.1109/PACT.2011.14
https://doi.org/10.1109/SC.2018.00017
https://doi.org/10.1109/JRPROC.1952.273898
http://arxiv.org/abs/10.1177/1094342004041296
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8485
https://doi.org/10.1145/73560.73588
https://doi.org/10.1145/800105.803390
https://doi.org/10.1137/0207033
https://doi.org/https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/2700395
https://doi.org/10.1007/978-3-642-11970-5_15
https://doi.org/10.1109/ICDE.2011.5767883
https://doi.org/10.1145/1921632.1921634
https://doi.org/10.1145/1921632.1921634

118 References

[88] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. Pegasus: A peta-scale graph mining
system implementation and observations. In 2009 Ninth IEEE International Conference on Data Mining,
pages 229–238, 2009. doi:10.1109/ICDM.2009.14.

[89] Paul-Virak Khuong and Pat Morin. Array layouts for comparison-based searching. ACM J. Exp.
Algorithmics, 22, May 2017. doi:10.1145/3053370.

[90] Ian P. King. An automatic reordering scheme for simultaneous equations derived from network
systems. International Journal for Numerical Methods in Engineering, 2(4):523–533, 1970. doi:10.1002/
nme.1620020406.

[91] Philip S. Kitcher et al. Eliminativism and falsification. Britannica Encyclopaedia, https://www.
britannica.com/topic/philosophy-of-science/Eliminativism-and-falsification, 1998. [On-
line; accessed September 2022].

[92] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):604–632, sep
1999. doi:10.1145/324133.324140.

[93] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc., USA, 1998. URL: https://dl.acm.org/doi/10.5555/280635.

[94] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck. Exploiting in-hub temporal
locality in SpMV-based graph processing. In 50th International Conference on Parallel Processing, ICPP
2021, New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3472456.
3472462.

[95] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck. How do graph relabeling
algorithms improve memory locality? In 2021 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 84–86, USA, 2021. IEEE Computer Society. doi:10.1109/
ISPASS51385.2021.00023.

[96] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck. Locality analysis of graph
reordering algorithms. In 2021 IEEE International Symposium on Workload Characterization (IISWC’21),
pages 101–112, USA, 2021. IEEE Computer Society. doi:10.1109/IISWC53511.2021.00020.

[97] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck. Thrifty Label Propaga-
tion: Fast connected components for skewed-degree graphs. In 2021 IEEE International Confer-
ence on Cluster Computing (CLUSTER), pages 226–237, USA, 2021. IEEE Computer Society. doi:
10.1109/Cluster48925.2021.00042.

[98] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck. LOTUS: Locality optimizing
triangle counting. In 27th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming (PPoPP 2022), page 219–233, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3503221.3508402.

[99] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck. MASTIFF: Structure-aware
minimum spanning tree/forest. In Proceedings of the 36th ACM International Conference on Supercom-
puting, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3524059.
3532365.

[100] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck. SAPCo Sort: Optimizing
degree-ordering for power-law graphs. In 2022 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). IEEE Computer Society, 2022. doi:10.1109/ISPASS55109.2022.
00015.

[101] Valdis E. Krebs. Mapping networks of terrorist cells. Connections, 24(3):43–52, 2001. URL: https:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.2612.

[102] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R. Bishop. A unified sparse
matrix data format for efficient general sparse matrix-vector multiplication on modern processors
with wide simd units. SIAM Journal on Scientific Computing, 36(5):C401–C423, 2014. doi:10.1137/
130930352.

[103] Jérôme Kunegis. Konect: The koblenz network collection. In Proceedings of the 22nd International
Conference on World Wide Web, WWW ’13 Companion, page 1343–1350, New York, NY, USA, 2013.
Association for Computing Machinery. doi:10.1145/2487788.2488173.

[104] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a social network or
a news media? In Proceedings of the 19th International Conference on World Wide Web, WWW ’10, page
591–600, New York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1772690.
1772751.

https://doi.org/10.1109/ICDM.2009.14
https://doi.org/10.1145/3053370
https://doi.org/10.1002/nme.1620020406
https://doi.org/10.1002/nme.1620020406
https://www.britannica.com/topic/philosophy-of-science/Eliminativism-and-falsification
https://www.britannica.com/topic/philosophy-of-science/Eliminativism-and-falsification
https://doi.org/10.1145/324133.324140
https://dl.acm.org/doi/10.5555/280635
https://doi.org/10.1145/3472456.3472462
https://doi.org/10.1145/3472456.3472462
https://doi.org/10.1109/ISPASS51385.2021.00023
https://doi.org/10.1109/ISPASS51385.2021.00023
https://doi.org/10.1109/IISWC53511.2021.00020
https://doi.org/10.1109/Cluster48925.2021.00042
https://doi.org/10.1109/Cluster48925.2021.00042
https://doi.org/10.1145/3503221.3508402
https://doi.org/10.1145/3524059.3532365
https://doi.org/10.1145/3524059.3532365
https://doi.org/10.1109/ISPASS55109.2022.00015
https://doi.org/10.1109/ISPASS55109.2022.00015
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.2612
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.2612
https://doi.org/10.1137/130930352
https://doi.org/10.1137/130930352
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/1772690.1772751

References 119

[105] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computation on
just a pc. In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, page 31–46, USA, 2012. USENIX Association. URL: https://www.usenix.org/conference/
osdi12/technical-sessions/presentation/kyrola.

[106] Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law)) graphs.
Theoretical Computer Science, 407(1):458–473, 2008. doi:0.1016/j.tcs.2008.07.017.

[107] Oliver Lehmberg, Robert Meusel, and Christian Bizer. Graph structure in the web: Aggregated by
pay-level domain. In Proceedings of the 2014 ACM Conference on Web Science, WebSci ’14, page 119–128,
New York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2615569.2615674.

[108] Yongsub Lim, U Kang, and Christos Faloutsos. Slashburn: Graph compression and mining beyond
caveman communities. IEEE Transactions on Knowledge and Data Engineering, 26(12):3077–3089, Dec
2014. doi:10.1109/TKDE.2014.2320716.

[109] Lijuan Luo, Martin Wong, and Wen-mei Hwu. An effective gpu implementation of breadth-first
search. In Proceedings of the 47th Design Automation Conference, DAC ’10, page 52–55, New York, NY,
USA, 2010. Association for Computing Machinery. doi:10.1145/1837274.1837289.

[110] Damien Magoni. Nem: a software for network topology analysis and modeling. In Proceedings. 10th
IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications
Systems, pages 364–371, 2002. doi:10.1109/MASCOT.2002.1167097.

[111] Priya Mahadevan, Dmitri Krioukov, Kevin Fall, and Amin Vahdat. Systematic topology analysis and
generation using degree correlations. In Proceedings of the 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM ’06, page 135–146, New York,
NY, USA, 2006. Association for Computing Machinery. doi:10.1145/1159913.1159930.

[112] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pages 135–146, 2010. doi:10.1145/
1807167.1807184.

[113] Dániel Marx. Graph colouring problems and their applications in scheduling. Periodica Polytechnica
Electrical Engineering (Archives), 48(1-2):11–16, 2004. URL: https://www.cs.bme.hu/~dmarx/papers/
marx-pp.pdf.

[114] Andrew McGregor. Graph stream algorithms: A survey. SIGMOD Rec., 43(1):9–20, may 2014. doi:
10.1145/2627692.2627694.

[115] John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving memory hierarchy perfor-
mance for irregular applications using data and computation reorderings. Intl. Journal of Parallel
Programming, pages 217–247, 2001. doi:10.1023/A:1011119519789.

[116] Mohd Khairul Anam Che Mentri. Descartes and popper on the foundations of knowledge. Master’s
thesis, University of Malaya, 2011. URL: http://studentsrepo.um.edu.my/3917/.

[117] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu graph traversal. SIGPLAN
Not., 47(8):117–128, February 2012. doi:10.1145/2370036.2145832.

[118] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. Graph structure in the web
— revisited: A trick of the heavy tail. In Proceedings of the 23rd International Conference on World Wide
Web, WWW ’14 Companion, page 427–432, New York, NY, USA, 2014. Association for Computing
Machinery. doi:10.1145/2567948.2576928.

[119] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The graph structure in
the web – analyzed on different aggregation levels. The Journal of Web Science, 1(1):33–47, 2015.
doi:10.1561/106.00000003.

[120] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827, 2002.
doi:10.1126/science.298.5594.824.

[121] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby Bhattachar-
jee. Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIG-
COMM Conference on Internet Measurement, IMC ’07, page 29–42, New York, NY, USA, 2007. ACM.
doi:10.1145/1298306.1298311.

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://doi.org/0.1016/j.tcs.2008.07.017
https://doi.org/10.1145/2615569.2615674
https://doi.org/10.1109/TKDE.2014.2320716
https://doi.org/10.1145/1837274.1837289
https://doi.org/10.1109/MASCOT.2002.1167097
https://doi.org/10.1145/1159913.1159930
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://www.cs.bme.hu/~dmarx/papers/marx-pp.pdf
https://www.cs.bme.hu/~dmarx/papers/marx-pp.pdf
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1023/A:1011119519789
http://studentsrepo.um.edu.my/3917/
https://doi.org/10.1145/2370036.2145832
https://doi.org/10.1145/2567948.2576928
https://doi.org/10.1561/106.00000003
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1145/1298306.1298311

120 References

[122] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi.
Naiad: A timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, page 439–455, New York, NY, USA, 2013. Association for Computing
Machinery. doi:10.1145/2517349.2522738.

[123] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure for graph
analytics. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP
’13, page 456–471, New York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/
2517349.2522739.

[124] Roger Pearce, Maya Gokhale, and Nancy M. Amato. Multithreaded asynchronous graph traversal
for in-memory and semi-external memory. In SC ’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–11, 2010. doi:
10.1109/SC.2010.34.

[125] Juan C. Pichel, David E. Singh, and Jesús Carretero. Reordering algorithms for increasing locality on
multicore processors. In 2008 10th IEEE International Conference on High Performance Computing and
Communications, pages 123–130, 2008. doi:10.1109/HPCC.2008.96.

[126] Karl Popper. The logic of scientific discovery. Hutchinson, 1959.

[127] Alejandro Portes. Social capital: Its origins and applications in modern sociology. Annual review of
sociology, 24(1):1–24, 1998. doi:10.1146/annurev.soc.24.1.1.

[128] David M W Powers. Parallelized quicksort with optimal speedup. Technical report, Universitt Kaiser-
slautern, 2007. URL: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.7281.

[129] Murali K. Pusala, Mohsen Amini Salehi, Jayasimha R. Katukuri, Ying Xie, and Vijay Raghavan.
Massive Data Analysis: Tasks, Tools, Applications, and Challenges, pages 11–40. Springer India, New
Delhi, 2016. doi:10.1007/978-81-322-3628-3_2.

[130] Lu Qin, Jeffrey Xu Yu, Lijun Chang, Hong Cheng, Chengqi Zhang, and Xuemin Lin. Scalable big
graph processing in mapreduce. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’14, page 827–838, New York, NY, USA, 2014. Association for Comput-
ing Machinery. doi:10.1145/2588555.2593661.

[131] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph an-
alytics and visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, AAAI’15, page 4292–4293, USA, 2015. AAAI Press. URL: https://dl.acm.org/doi/10.5555/
2888116.2888372.

[132] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-Stream: Edge-centric graph processing
using streaming partitions. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, page 472–488, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2517349.2522740.

[133] Youcef Saad. Sparskit: a basic tool kit for sparse matrix computations - version 2, 1994. URL:
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3853.

[134] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathe-
matics, second edition, 2003. doi:10.1137/1.9780898718003.

[135] Siddharth Samsi, Jeremy Kepner, Vijay Gadepally, Michael Hurley, Michael Jones, Edward Kao, San-
jeev Mohindra, Albert Reuther, Steven Smith, William Song, Diane Staheli, and Paul Monticciolo.
Graphchallenge.org triangle counting performance. In 2020 IEEE High Performance Extreme Comput-
ing Conference (HPEC), pages 1–9, USA, 2020. IEEE. doi:10.1109/HPEC43674.2020.9286166.

[136] Peter Sanders and Rudolf Fleischer. Asymptotic complexity from experiments? a case study for
randomized algorithms. In Stefan Näher and Dorothea Wagner, editors, Algorithm Engineering, pages
135–146, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. doi:10.1007/3-540-44691-5_12.

[137] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park, M. Am-
ber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey. Navigating the maze of graph
analytics frameworks using massive graph datasets. In Proceedings of the 2014 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’14, page 979–990, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2588555.2610518.

[138] Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles in large graphs,
an experimental study. In Sotiris E. Nikoletseas, editor, Experimental and Efficient Algorithms, pages
606–609, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. doi:10.1007/11427186_54.

https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1109/SC.2010.34
https://doi.org/10.1109/SC.2010.34
https://doi.org/10.1109/HPCC.2008.96
https://doi.org/10.1146/annurev.soc.24.1.1
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.7281
https://doi.org/10.1007/978-81-322-3628-3_2
https://doi.org/10.1145/2588555.2593661
https://dl.acm.org/doi/10.5555/2888116.2888372
https://dl.acm.org/doi/10.5555/2888116.2888372
https://doi.org/10.1145/2517349.2522740
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3853
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1109/HPEC43674.2020.9286166
https://doi.org/10.1007/3-540-44691-5_12
https://doi.org/10.1145/2588555.2610518
https://doi.org/10.1007/11427186_54

References 121

[139] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L. Willke, Jeffrey Young, Matthew
Wolf, and Karsten Schwan. Graphin: An online high performance incremental graph process-
ing framework. In Proceedings of the 22nd International Conference on Euro-Par 2016: Parallel Pro-
cessing - Volume 9833, page 319–333, Berlin, Heidelberg, 2016. Springer-Verlag. doi:10.1007/
978-3-319-43659-3_24.

[140] Harold H. Seward. Internal sorting by floating digital sort. Master’s thesis, Massachusetts In-
stitute of Technology, 1954. URL: http://bitsavers.org/pdf/mit/whirlwind/R-series/R-232_
Information_Sorting_in_the_Application_of_Electronic_Digital_Computers_to_Business_
Operations_May54.pdf.

[141] Muhammad Akram Shaikh, Jiaxin Wang, Zehong Yang, and Yixu Song. Graph structural mining
in terrorist networks. In Reda Alhajj, Hong Gao, Jianzhong Li, Xue Li, and Osmar R. Zaïane, edi-
tors, Advanced Data Mining and Applications, pages 570–577, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg. doi:10.1007/978-3-540-73871-8_54.

[142] Hiroaki Shiokawa, Tomokatsu Takahashi, and Hiroyuki Kitagawa. Scalescan: Scalable density-
based graph clustering. In Sven Hartmann, Hui Ma, Abdelkader Hameurlain, Günther Pernul,
and Roland R. Wagner, editors, Database and Expert Systems Applications, pages 18–34, Cham, 2018.
Springer International Publishing. doi:10.1007/978-3-319-98809-2_2.

[143] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework for shared
memory. SIGPLAN Not., 48(8):135–146, February 2013. doi:10.1145/2517327.2442530.

[144] Julian Shun and Kanat Tangwongsan. Multicore triangle computations without tuning. In 2015 IEEE
31st International Conference on Data Engineering, pages 149–160, USA, 2015. IEEE. doi:10.1109/ICDE.
2015.7113280.

[145] Scott W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. International
Journal for Numerical Methods in Engineering, 23(2):239–251, 1986. doi:10.1002/nme.1620230208.

[146] George M. Slota, Cameron Root, Karen Devine, Kamesh Madduri, and Sivasankaran Rajamanickam.
Scalable, multi-constraint, complex-objective graph partitioning. IEEE Transactions on Parallel and
Distributed Systems, 31(12):2789–2801, 2020. doi:10.1109/TPDS.2020.3002150.

[147] Friendster social network. Friendster: The online gaming social network, 2011. URL: https://
archive.org/details/friendster-dataset-201107.

[148] Andrew Sohn and Yuetsu Kodama. Load balanced parallel radix sort. In Proceedings of the 12th Inter-
national Conference on Supercomputing, ICS ’98, page 305–312, New York, NY, USA, 1998. Association
for Computing Machinery. doi:10.1145/277830.277903.

[149] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. GraphR: Accelerating graph pro-
cessing using reram. In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 531–543, 2018. doi:10.1109/HPCA.2018.00052.

[150] Michelle Mills Strout and Paul D. Hovland. Metrics and models for reordering transformations. In
Proceedings of the 2004 Workshop on Memory System Performance, MSP ’04, page 23–34, New York, NY,
USA, 2004. Association for Computing Machinery. doi:10.1145/1065895.1065899.

[151] Bor-Yiing Su, Tasneem G. Brutch, and Kurt Keutzer. Parallel bfs graph traversal on images using
structured grid. In 2010 IEEE International Conference on Image Processing, pages 4489–4492, 2010.
doi:10.1109/ICIP.2010.5652307.

[152] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. Accelerating graph analytics by
utilising the memory locality of graph partitioning. In 2017 46th International Conference on Parallel
Processing (ICPP), pages 181–190, USA, 2017. ACM. doi:10.1109/ICPP.2017.27.

[153] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. Graphgrind: Addressing load im-
balance of graph partitioning. In Proceedings of the International Conference on Supercomputing, ICS ’17,
New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3079079.3079097.

[154] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. VEBO: A vertex- and edge-
balanced ordering heuristic to load balance parallel graph processing. CoRR, abs/1806.06576:1–13,
2018. arXiv:1806.06576.

[155] Michael Sutton, Tal Ben-Nun, and Amnon Barak. Optimizing parallel graph connectivity computa-
tion via subgraph sampling. In 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 12–21. IEEE, 2018. doi:10.1109/IPDPS.2018.00012.

https://doi.org/10.1007/978-3-319-43659-3_24
https://doi.org/10.1007/978-3-319-43659-3_24
http://bitsavers.org/pdf/mit/whirlwind/R-series/R-232_Information_Sorting_in_the_Application_of_Electronic_Digital_Computers_to_Business_Operations_May54.pdf
http://bitsavers.org/pdf/mit/whirlwind/R-series/R-232_Information_Sorting_in_the_Application_of_Electronic_Digital_Computers_to_Business_Operations_May54.pdf
http://bitsavers.org/pdf/mit/whirlwind/R-series/R-232_Information_Sorting_in_the_Application_of_Electronic_Digital_Computers_to_Business_Operations_May54.pdf
https://doi.org/10.1007/978-3-540-73871-8_54
https://doi.org/10.1007/978-3-319-98809-2_2
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1109/ICDE.2015.7113280
https://doi.org/10.1109/ICDE.2015.7113280
https://doi.org/10.1002/nme.1620230208
https://doi.org/10.1109/TPDS.2020.3002150
https://archive.org/details/friendster-dataset-201107
https://archive.org/details/friendster-dataset-201107
https://doi.org/10.1145/277830.277903
https://doi.org/10.1109/HPCA.2018.00052
https://doi.org/10.1145/1065895.1065899
https://doi.org/10.1109/ICIP.2010.5652307
https://doi.org/10.1109/ICPP.2017.27
https://doi.org/10.1145/3079079.3079097
http://arxiv.org/abs/1806.06576
https://doi.org/10.1109/IPDPS.2018.00012

122 References

[156] Daniel Terpstra, Heike Jagode, Haihang You, and Jack J. Dongarra. Collecting performance data
with PAPI-C. In Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel,
editors, Tools for High Performance Computing 2009 - Proceedings of the 3rd International Workshop on
Parallel Tools for High Performance Computing, September 2009, ZIH, Dresden, pages 157–173. Springer,
2009. doi:10.1007/978-3-642-11261-4_11.

[157] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller, and Christos Faloutsos. Doulion: Counting
triangles in massive graphs with a coin. In Proceedings of the 15th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’09, page 837–846, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1557019.1557111.

[158] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111, aug
1990. doi:10.1145/79173.79181.

[159] Hans Vandierendonck. Graptor: Efficient pull and push style vectorized graph processing. In Pro-
ceedings of the 34th ACM International Conference on Supercomputing, ICS ’20, New York, NY, USA, 2020.
ACM. doi:10.1145/3392717.3392753.

[160] Hans Vandierendonck. Software-defined floating-point number formats and their application to
graph processing. In Proceedings of the 36th ACM International Conference on Supercomputing, ICS ’22,
New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3524059.3532360.

[161] Youwei Wang, Weihui Dai, and Yufei Yuan. Website browsing aid: A navigation graph-based recom-
mendation system. Decis. Support Syst., 45(3):387–400, June 2008. doi:10.1016/j.dss.2007.05.006.

[162] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks. nature,
393(6684):440–442, 1998. doi:10.1038/30918.

[163] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. Speedup graph processing by graph ordering. In
Proceedings of the 2016 International Conference on Management of Data, SIGMOD ’16, page 1813–1828,
New York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2882903.2915220.

[164] Howard T Welser, Eric Gleave, Danyel Fisher, and Marc Smith. Visualizing the signatures of social
roles in online discussion groups. Journal of social structure, 8(2):1–32, 2007. URL: https://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.352.3618.

[165] Stefan Wuchty. Controllability in protein interaction networks. Proceedings of the National Academy of
Sciences, 111(19):7156–7160, 2014. doi:10.1073/pnas.1311231111.

[166] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger. Scan: A structural clustering
algorithm for networks. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’07, pages 824–833, New York, NY, USA, 2007. ACM. doi:10.1145/
1281192.1281280.

[167] Abdurrahman Yasar, Sivasankaran Rajamanickam, Jonathan W. Berry, and Ümit V. Çatalyürek. A
block-based triangle counting algorithm on heterogeneous environments. CoRR, abs/2009.12457:1–
13, 2020. arXiv:2009.12457.

[168] Abdurrahman Yaşar, Sivasankaran Rajamanickam, Michael Wolf, Jonathan Berry, and Ümit V.
Çatalyürek. Fast triangle counting using cilk. In 2018 IEEE High Performance extreme Computing
Conference (HPEC), pages 1–7, USA, 2018. IEEE. doi:10.1109/HPEC.2018.8547563.

[169] Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas. Speeding up spmv for power-
law graph analytics by enhancing locality & vectorization. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’20. IEEE Press, 2020. URL:
https://dl.acm.org/doi/10.5555/3433701.3433815.

[170] Haiyuan Yu, Philip M Kim, Emmett Sprecher, Valery Trifonov, and Mark Gerstein. The importance
of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS
computational biology, 3(4):e59, April 2007. URL: https://europepmc.org/articles/PMC1853125,
doi:10.1371/journal.pcbi.0030059.

[171] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas. Imp: Indirect memory
prefetcher. In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 178–190, 2015. doi:10.1145/2830772.2830807.

[172] Feng Zhang, Bo Wu, Jidong Zhai, Bingsheng He, and Wenguang Chen. Finepar: Irregularity-
aware fine-grained workload partitioning on integrated architectures. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 27–38, 2017. doi:10.1109/CGO.2017.
7863726.

https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1145/1557019.1557111
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/3392717.3392753
https://doi.org/10.1145/3524059.3532360
https://doi.org/10.1016/j.dss.2007.05.006
https://doi.org/10.1038/30918
https://doi.org/10.1145/2882903.2915220
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.3618
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.3618
https://doi.org/10.1073/pnas.1311231111
https://doi.org/10.1145/1281192.1281280
https://doi.org/10.1145/1281192.1281280
http://arxiv.org/abs/2009.12457
https://doi.org/10.1109/HPEC.2018.8547563
https://dl.acm.org/doi/10.5555/3433701.3433815
https://europepmc.org/articles/PMC1853125
https://doi.org/10.1371/journal.pcbi.0030059
https://doi.org/10.1145/2830772.2830807
https://doi.org/10.1109/CGO.2017.7863726
https://doi.org/10.1109/CGO.2017.7863726

References 123

[173] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-aware graph-structured analytics. SIGPLAN
Not., 50(8):183–193, January 2015. doi:10.1145/2858788.2688507.

[174] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and Matei Zaharia. Mak-
ing caches work for graph analytics. In 2017 IEEE International Conference on Big Data (Big Data), pages
293–302, USA, 2017. IEEE. doi:10.1109/BigData.2017.8257937.

[175] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Ama-
rasinghe. Graphit: A high-performance graph dsl. Proc. ACM Program. Lang., 2(OOPSLA), October
2018. doi:10.1145/3276491.

[176] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label prop-
agation. Technical report, -, 2002. URL: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.13.8280.

[177] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A computation-centric
distributed graph processing system. In Proceedings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’16, pages 301–316, Berkeley, CA, USA, 2016. USENIX Asso-
ciation. URL: https://www.usenix.org/conference/osdi16/technical-sessions/presentation/
zhu.

[178] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale graph processing on a
single machine using 2-level hierarchical partitioning. In Proceedings of the 2015 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC ’15, page 375–386, USA, 2015. USENIX Association.
URL: https://www.usenix.org/conference/atc15/technical-session/presentation/zhu.

[179] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu, Yanzhi Wang, and Xuehai
Qian. GraphQ: Scalable pim-based graph processing. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’52, page 712–725, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3352460.3358256.

https://doi.org/10.1145/2858788.2688507
https://doi.org/10.1109/BigData.2017.8257937
https://doi.org/10.1145/3276491
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8280
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8280
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://www.usenix.org/conference/atc15/technical-session/presentation/zhu
https://doi.org/10.1145/3352460.3358256

	Contents
	Introduction
	High-Performance Graph Processing and Its Challenges
	Research Questions
	Research Scope
	Contributions & Publications
	Thesis Structure

	Background
	Terminology and Graph Representations
	Skewed Degree Distribution
	Performance Bottlenecks
	Literature Review
	Matrix-Vector Multiplication
	Pregel's Bulk Synchronous Parallel
	Structure-Aware Graph Partitioning
	Asynchronous and Partially Asynchronous
	Out-of-Core Graph Processing
	NUMA-Aware Optimizations
	Optimizing Locality

	Analysis of Graph Relabeling Algorithms and Graph Datasets
	Introduction
	Prerequisites
	SpMV Graph Traversal
	Sequential vs Random Memory Accesses
	Graph Relabeling
	Relabeling Algorithms
	Preprocessing Overheads

	Locality Types and Metrics
	Locality Types
	Neighbour to Neighbour Average ID Distance
	Cache Miss Rate Degree Distribution

	Locality Analysis of RAs
	SlashBurn
	GOrder
	Rabbit-Order
	Observation on Hubs
	Real Execution Performance Metrics
	How Much of Cache Capacity Is ``Effectively'' Used?

	Locality Analysis of Graph Datasets
	Web Graphs vs. Social Networks
	Push Locality vs. Pull Locality

	Conclusion

	Uniform Memory Demands Strategy
	Introduction
	Analysis and Design Steps
	Applications
	Discussion

	SAPCo Sort: Structure-Aware Parallel Counting Sort
	Introduction
	Counting Sort
	Sequential Counting Sort
	Parallel Counting Sort

	Algorithm Design
	Step 1: Identifying Contrasting Demands & Behaviours
	Step 2: Considering Potential Solutions
	Step 3: Matching & Adjusting
	Step 4: Merging

	SAPCo Sort Algorithm
	Evaluation
	Performance Evaluation
	Hardware Instructions and Memory Accesses

	Conclusion and Further Applications

	iHTL: Exploiting in-Hub Temporal Locality in SpMV
	Introduction
	Algorithm Design
	Step 1: Identifying Contrasting Demands & Behaviours
	Step 2: Considering Potential Solutions
	Step 3: Matching & Adjusting
	Step 4: Merging

	iHTL: In-Hub Temporal Locality
	iHTL Graph
	Creating The iHTL Graph
	Number of in-Hubs and Flipped Blocks
	iHTL Processing

	Evaluation
	iHTL vs Pull and Push Implementations
	Memory Accesses and Cache Misses
	Memory Space Overhead
	iHTL vs Relabeling Algorithms
	Execution Breakdown & Graph Statistics
	Buffer Size

	Related Work
	Conclusion & Further Applications

	LOTUS: Locality Optimizing Triangle Counting
	Introduction
	Prerequisites
	Terminology
	TC Algorithms

	Analysis of The Forward Algorithm for Power-Law Graphs
	Low Locality in Processing Non-Hub Vertices
	Lack of Compactness of Graph Topology
	Fruitless Searches
	Highly Dense Hubs Sub-graph

	Algorithm Design
	Step 1: Identifying Contrasting Demands & Behaviours
	Steps 2 and 3: Considering Potential Solutions, Matching, and Adjusting
	Step 4: Merging

	LOTUS Algorithm
	Lotus Graph Structure
	Lotus Preprocessing
	Counting Triangles in Lotus
	How Does Lotus Improve Locality?
	Graph Partitioning and Load Balancing in Lotus

	Evaluation
	Comparison to Previous Works
	Hardware Counters
	Execution Breakdown
	Less Power-Law Graphs
	Topology Data Size
	H2H Bit Array
	Squared Edge Tiling

	Further Related Works
	TC History
	Approximate and Streaming TC
	Improvements to TC and Forward Algorithm
	Distributed and GPU-based TC

	Conclusion and Further Applications

	Conclusion and Future Directions
	Summary
	Limitations & Dependencies
	Suggestions for Future Work

	Experimental Setup
	Machines
	Datasets
	Implementation and Source Code

	References

