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Abstract

Progress in High-Performance Computing in general, and
High-Performance Graph Processing in particular, is highly
dependent on the availability of publicly-accessible, relevant,
and realistic data sets.

In this paper, we announce publication of MS-BioGraphs,
a new family of publicly-available real-world edge-weighted
graph datasets with up to 2.5 trillion edges, that is, 6.6 times
greater than the largest graph published recently.

We briefly review the two main challenges we faced in
generating large graph datasets and our solutions, that are,
(i) optimizing data structures and algorithms for this multi-
step process and (ii) WebGraph parallel compression technique.
We also study some characteristics of MS-BioGraphs.

The datasets and the complete version of this paper are
available on https://blogs.qub.ac.uk/DIPSA/MS-BioGraphs.
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1. HPC Challenges and Our Solutions

Processing Model. In contrast to the MPI model, we
search for a distributed processing model that (i) dynam-
ically adjusts the degree of parallelism (i.e., the number of
machines/processors involved in the processing) and (ii) does
not restrict the size of processed data to the total memory of
the cluster while machines have access to a shared storage
that hosts the datasets and the intermediary data.

We deploy a distributed model in which algorithms
are designed as a number of sequential steps with parallel
workloads per step. In each step, machines contribute to
the total processing independently from each other and the
input and output data for each processing slot is loaded
from and stored to the shared storage. So, machines only
communicate (a) to the shared storage to retrieve/store data
and (b) to the scheduler to receive a partition of a task or
to inform completion of a partition.

In this way, each machine requires a memory size
that is enough to complete processing a partition. This
facilitates processing the datasets whose sizes are greater
than the available memory. Moreover, as the machines do
not communicate with each other, each step can be started

as soon as at least one machine becomes available and new
machines can join/leave a running step. This (i) relaxes the
assumption of permanent availability of a fixed number of
resources during the whole execution time, (ii) minimizes
the waiting time, and (iii) optimizes cluster utilization.

Parallelizing Graph Compression. As MS-BioGraphs
have binary sizes of up to 20 TeraBytes, it is necessary
to compress them to make their storage, transfer over the
network, and processing more efficient.

To that end, we used the WebGraph framework? [2],
an open-source graph compression framework that has
been continuously maintained and updated during the last
20 years. This framework provides a highly-efficient graph
compression and includes a rich set of graph operations and
analytics. Moreover, the users of languages and frameworks
with WebGraph support, such as Hadoop, C++, Python, and
Matlab, benefit from direct access to MS-BioGraphs.

We extended the WebGraph framework in two direc-
tions: in the first phase, we extended labelled graphs to
support parallel compression of the underlying graph. In
the second phase, we partially violated the decoupled design
of labelled graphs in WebGraph, adding to the compression
phase of the main storage format class of WebGraph,
BVGraph (that compresses and stores the underlying graph),
an option to store the labels at the same time.

2. Generating MS-BioGraphs

Inspired by HipMCL [1], we use the Metaclust
dataset® [7] that contains 1.7 billion protein sequences.

We collected all similarities produced by the LAST
sequence alignment algorithm® [3]. We selected LAST as
aligner as it shows better single-machine performance and
has been widely used and maintained since its publication in
2011. Sequence matching by LAST is performed in two steps:
(i) creating a database from sequences using a program
called lastdb and (ii) aligning the sequences of a file against
the created database using lastal that outputs the matched
sequences and their scores.

To create MS-BioGraphs, we compute all-against-all
matching of the sequences. Since sequence similarity is

1. https://webgraph.di.unimi.it/
2. https://metaclust. mmseqs.com/2018_06/metaclust_all.gz
3. https://gitlab.com/mcfrith/last
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TABLE 1: MS-BioGraphs Statistics

Name Directed [V|(M) [E| (B) Filteri.ng Max. Deg. Weight Zero Deg. Avg. Deg. Size (GB)
Intention In(K) Out(K) Min. Max. In(M) Out(M) In Out Base Labels
MS No 17573 | 2,488.0 - 814.9 98 | 634,925 6.4 1,415.8 148.9 99.95 | 6,843.6 | 4,696.0
MS200  No | 14144 5029  0.200[E|, W 7457 460 634925 0.0 355.6 338.3 9661 13627 11196
MS50 No 5856 1247  0.050E|, W 507.8 | 900 634,925 0.0 213.1 155.3 8195 | 3271 | 303.1
MS1  No 431 26 0.001E, W 142 3,680 634,925 0.0 617 15.7 4.66 61 77
MSA500 Yes 17573 12449 DpeighsIDy | 2204 | 8144 98 634925 64| 168 7110|7153 1489 99.94 35022 23518
MSA200  Yes 17573 5004 0200E| VRW 6588 7091 98 634925 64 74| 2858 2860 2215 9929 14552 10337
MSA50 Yes 17573 1253 0.050[E, VRW 543.1 2979 98 634925 64 85 716 717 3631 9415 | 3852 | 268.3
MSA10  Yes | 17573 252 0OW0[E,VRW 207.2 620 98 634925 6.4 99| 144 144 6285 61.72 840 573
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Figure 1: Creation Steps (UC: uncompressed)

a symmetric relation, instead of matching each pair of
sequences twice, we match each sequence only to sequences
with lower IDs. This produces a directed weighted graph
whose symmetric version represents all the matches and
their scores.

We have the following steps as depicted also in Figure 1.
First, we need to create LAST databases using lastdb
and then call lastal to create the similarities, i.e., the
asymmetric graph in the coordinate format (COO).

The next step is converting the COO graph to the
Compressed Sparse Columns (CSC) [6] format which is
followed by symmetrizing and compression. We also create
some subgraphs to support research studies with different
graph size and direction requirements. Therefore an “Edge
Filtering" step is required to create subgraphs and we need
to remove zero-degree vertices.

3. Characteristics of MS-BioGraphs

Naming. The name of each graph is started by two
characters M and S as initials of Metaclust (as the source
dataset) and Sequence similarity (as the real-world domain
of the graph), respectively. The name of the directed
subgraphs has a third character A that indicates the graph
is asymmetric. The name of subgraphs is followed by up
to 3 digits that show the relative-size of the subgraph in
comparison to the MS graph, multiplied by a thousand.

Column 5 of Table 1 summarizes the naming scheme. For
the undirected subgraphs MS200, MS50, and MS1 the weight
of edges (shown as W in the table) has been considered
as the filtering metric. For the directed subgraphs MSA200,

MSAS50, and MSA10 the vertex-relative weight (shown as
VRW in the table) has been used as sampling metric.

Statistics. Table 1 shows the general statistics of the
MS-BioGraphs.

Degree Distribution. Figure 2 shows the degree distri-
bution of the MS graph. The Frequency degree distribution
plot shows that the MS graph has a skewed degree distribu-
tion. The Fibonacci Binned plot [8] shows that the degree
distribution does not follow a particular known degree
distribution, especially given that two changes of concavity
are observed.

We identify that the MS graph has a steep slope on
the Cumulative Edges plot that indicates more than 98% of
edges are incident to the vertices with degrees 100 to 50K.
As such, the low-degree vertices (degrees < 100) and very
high-degree vertices (degrees > 50K) hardly contribute to
the total edges in MS.

To identify the connection between vertices, we use the
degree decomposition plot [5] in Figure 2. This shows the
low-degree vertices (vertices with degree 1-100) of the MS
graph do not contribute to the higher vertex classes. This
is in contrast to social networks and web graphs whose
low-degree vertices are the main constituents of all vertex
classes [5]. Moreover, in MS graph high-degree vertices are
tightly connected to each other. The similar trend has been
observed in social networks [5].

This tight connection between high-degree vertices and its
coincidence with their high cumulative frequency introduces
a new structure of real-world skewed graphs with obvious
differences to the previously studied ones such as web
graphs and social networks [5].

Weight Distribution. Figure 2 shows the weight dis-
tribution of the MS graph and their Cumulative Frequency
plots. The plots indicate that weights do not have a random
distribution and follow a skewed distribution with a tail close
to power-law distribution.

Weakly-Connected Components. Figures 3 and 4
show the component size distribution for symmetric and
asymmetric MS-BioGraphs, respectively. The plots indicate
a power-law size distribution and a very-high degree of
connectivity in MS and also large subgraphs.

Push vs. Pull Locality. The Push vs. Pull Locality
metric [5] considers the cumulative effectiveness of the
in-hubs in comparison to the out-hubs in an asymmetric
graph. Figure 6 illustrates it for the MSA200 and shows
that the push locality curve is very close to the pull locality
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Figure 6: MSA200 Push vs. Pull locality

curve. MS-BioGraphs, in contrast to social networks and web
graphs, demonstrate the same Push and Pull Locality.

4. Conclusion

To provide a more effective HPGP research environment
by accessing realistic and updated datasets with a better
coverage of various application-domains, we announce the
MS-BioGraphs, a family of sequence similarity graphs
with up to 2.5 trillion edges which is 6.6 times greater than
the previous largest real-world graph.

Our study of MS-BioGraphs’ characteristics shows a
skewed degree distribution and a particular graph structure
that makes their structure very different from web graphs
and social networks.
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Figure 4: WCC of asymmetric graphs

The full version of this paper [4] presents (i) a com-
prehensive discussion on the necessity and importance
of the updated real-world public datasets, (ii) a detailed
explanation of the process-wide engineering and design of
the required data structures and algorithms for generation
steps of MS-BioGraphs, and (iii) a comparative study of
MS-BioGraphs characteristics to other real-world graphs.
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