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ABSTRACT

The Subgraph Isomorphism (SI) search problem involves searching for the embeddings of a
pattern graph in a given data graph. Several heuristic algorithms in the literature speed up the
execution of the NP-complete problem by pruning the search space using various techniques.
Many of these algorithms can be divided into three stages. In the first stage, filtering is performed
for each pattern graph vertex to select a subset of the vertices from the data graph for potential
mapping. In this study, we propose a technique to augment the filtering capabilities of existing
algorithms using graphlet (orbit) counts of the pattern and data graphs vertices. Our proposed
technique enhances the filtering capabilities in the current heuristic algorithms by up to 15.38%.
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1 Introduction
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Fig. 1: Subgraph isomorphism mapping between a pattern graph (left) vertices mapped to
the corresponding vertices in a data graph (right).

Graphs are widely used in computer science to represent various types of structured data
from domains like astronomy, bioinformatics, social and computer networks, etc. Graph
analytics deals with the analysis of such graph data structures. The Subgraph Isomorphism
(SI) search problem is recurringly used in graph analytics. The SI problem involves the
discovery of the embeddings of a pattern (or query) graph in a given data graph. Fig. 1
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shows an embedding of a pattern graph in a data graph. The SI problem finds applications
in various tasks like pattern discovery and graph database query resolution. However,
because of being NP-complete, no polynomial-time algorithm for the SI search problem is
known. However, multiple heuristics have been proposed in the literature that uses various
characteristics of the pattern and data graphs to prune the exhaustive search space. We
discuss the heuristics in more detail in Section 2.

2 Overview of the heuristic algorithms

Multiple heuristic algorithms for the SI problem can be divided into three stages, the first
of which is the filtering stage. In this stage, for each vertex, ui, of the pattern graph, the
candidate sets of vertices from the data graph, C(ui), is generated. These sets contain the
filtered set of vertices from the data graph that the particular pattern vertex may potentially
be mapped to. Two techniques for filtering that are universally applied in many heuristics,
including all available heuristics in the IMSM [SL20] codebase, are (a) Label and Degree
Filtering (LDF) and (b) Neighbourhood Label Filtering (NLF).

The LDF filtering ensures that for each ui, C(ui) contains only those vertices from the
data graph that have (a) the same label as ui and (b) degree equal to or greater than ui. For
the pattern and data graphs in Fig. 1, the candidate sets after applying LDF filtering are
C(u0) = {v0}, C(u1) = {v2, v4, v6}, C(u2) = {v1, v3, v5}, and C(u3) = {v9, v10, v12}.
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Fig. 2: Candidate sets after LDF and
NLF filtering.
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Fig. 3: Search tree after LDF and NLF filtering and HDF
ordering.

The NLF filtering, applied after the LDF filtering, ensures that for each ui, C(ui) is further
constrained to contain only those data graph vertices whose neighbours have a multiset of
labels that is a superset of the multiset of labels of the ui’s neighbours. There are no changes
in the candidate sets, C(u0), C(u1), and C(u2), after NLF filtering, but C(u3) is updated to
C(u3) = {v10, v12}. The candidate sets for the pattern graph vertices in Fig. 1 using its data
graph after LDF and NLF filtering are shown in Fig. 2.

After filtering, the next stage determines the order in which the vertices of the pattern
graph are checked for successful mapping with the vertices in the candidate sets from the
data graph. The Highest Degree First (HDF) strategy is used by many algorithms, including
Ullmann [Ull76] and VF2 [CFSV04]. When two vertices have the same degree, we randomly
pick one before the other. For the pattern graph in Fig. 1, we obtain {u1, u2, u3, u0} as the
search order using HDF ordering. In the third and final stage, a backtracking search is
performed to find the SI embeddings. Fig. 3 shows the search tree to find the embeddings of
the pattern graph in the data graph in Fig. 1 after LDF and NLF filtering, and HDF ordering.



3 Our Proposed Approach

Graphlets (or motifs) are commonly recurring small subgraphs in a large graph and are often
used to characterise the internal structure of a graph. Orbits are groups of vertices of the
graphlets with respect to their automorphism, defining the roles of the vertices within a
graphlet. The ORbit Counting Algorithm (ORCA) [HD14] is often used for the efficient
extraction of orbit counts. The fifteen orbits obtained using the nine connected graphlets of
size up to four are shown in Fig. 4.
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Fig. 4: Fifteen orbits in the nine connected graphlets of up to size four.

We propose a new stage of filtering, to be applied after LDF and NLF filtering, named
Graphlet Filtering (GLF). The GLF filtering is based on the observation that for any pattern
vertex, ui, its orbit count for any particular orbit, oj , must be smaller than or equal to the
orbit count of oj for each candidate data vertex in C(ui).
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Fig. 5: Candidate set after GLF
filtering.
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Fig. 6: Search tree after additional GLF
filtering.

We observe that the count of orbit 3 (i.e., vertex of a triangle graphlet) for u3 is two (i.e.,
u3 belongs to two triangles in the pattern graph), while v1 belongs to only one triangle in
the data graph. Therefore, we obtain further filtering of {v1} /∈ C(u2) using GLF filtering.
Similarly, {v2, v6} /∈ C(u1) because u1 has a count of one for orbit 13 (i.e., 3-degree vertex
in 4-chordal-cycle graphlet), while v2 and v6 have a count of zero for orbit 13 (i.e., they do
not belong to any 4-chordal-cycle graphlet). Fig. 5 shows the candidate sets for the pattern
graph in Fig. 1 on applying GLF filtering after LDF and NLF filtering. Fig. 6 shows the search
tree using HDF ordering after GLF filtering.

4 Preliminary Results

In our preliminary experiments with three datasets, i.e., HUMAN, HPRD and YEAST, we
observe that GLF filtering is able to perform additional filtering of 12.93% in the YEAST,
10.64% in the HUMAN and 4.2% in the HPRD datasets. Across all datasets, we obtain a filtering
enhancement of 9.93% in the SPARSE and 8.49% in the DENSE pattern graphs. In both
SPARSE and DENSE pattern graphs, we get filtering enhancements up to 15.38% in different
datasets. Fig. 7 shows the mean candidate sets size before and after GLF filtering.



Fig. 7: Candidate sets sizes in dense (above) and sparse (below) pattern graphs

5 Conclusion

We observe in our preliminary studies that orbit or graphlet-based (GLF) filtering can be
beneficial for more restrictive filtering, thereby pruning the search tree in the Subgraph
Isomorphism problem. We tested the GLF filtering technique in combination with LDF and
NLF filtering techniques. Multiple heuristic algorithms in the literature use various data
structures and methods for filtering [SL20]. Future studies would analyse the effect of the
GLF filtering technique in the runtime of the various heuristic algorithms. Our study has
the potential to reduce the execution time of algorithms for pattern discovery and graph
database query resolution.
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