Welcome to the Antimatter & many-body theory group of Dermot Green at Queen’s University Belfast!

We develop theoretical and computational methods to describe the interactions of antimatter with atoms, molecules and condensed matter, to provide fundamental insight required to support and direct experiment, inform other theory, and develop antimatter-based technologies. The group director is Dr Dermot Green.

See the tabs above for publications, team members etc. See below for news items.

Publications

Topics:

The overarching theme of my group’s research has been tackling complicated quantum many-body problems, describing experiment and making predictions for real systems. Our primary interest is in developing theory and computational approaches to describe low-energy antimatter interactions with atoms and molecules; other topics include:

  • atomic and molecular diagrammatic many-body theory;
  • theory of low-energy antimatter (positron and positronium) interactions with atoms and molecules;
  • theory of atomic and molecular collisions;
  • quantum chaos;
  • theory of ultraintense-laser matter interactions.
  • computational quantum many-body physics & quantum chemistry, including development of B-spline and Gaussian basis approaches, ab initio GW/Bethe-Salpeter methods and beyond. 

Selected highlighted publications

Many-body theory of positron binding in polyatomic molecules
J. Hofierka, B. Cunningham, C. M. Rawlins, C. H. Patterson, D. G. Green, Nature 606, 688 (2022) [open access].

Many-body theory calculations of positron scattering and annihilation in H2, N2 and CH4,
C. M. Rawlins, J. Hofierka, B. Cunningham, C. H. Patterson and D. G. Green

arXiv:2303.02083, Phys. Rev. Lett. 130, 263001 (2023) [open access]

Positron annihilation and binding in aromatic and other ring molecules
E. Arthur-Baidoo, J. R. Danielson, C. M. Surko, J. P. Cassidy, S. K. Gregg, J. Hofierka, B. Cunningham, C. H. Patterson, D. G. Green, arXiv:2311.13066
, Phys. Rev. A 109, 062801 (2024); Editors’ Suggestion.

Many-body theory for positronium-atom interactions,
D. G. Green, A. R. Swann, and G. F. Gribakin, Phys. Rev. Lett. 120, 183402 (2018)

γ-ray spectra and enhancement factors for positron annihilation spectra with core-electrons
D. G. Green and G. F. Gribakin, Phys. Rev. Lett. 
114, 093201 (2015).

Transverse spreading of electrons in high-intensity laser fields
D. G. Green and C. N. Harvey, Phys. Rev. Lett. 
112, 164801 (2014).

Preprints/under review


Many-body theory/antimatter interactions with atoms and molecules

Positron annihilation and binding in aromatic and other ring molecules
E. Arthur-Baidoo, J. R. Danielson, C. M. Surko, J. P. Cassidy, S. K. Gregg, J. Hofierka, B. Cunningham, C. H. Patterson, D. G. Green, arXiv:2311.13066
, Phys. Rev. A 109, 062801 (2024); Editors’ Suggestion.

Many-body Theory Calculations of Positron Binding to Halogenated Hydrocarbons
J. P. Cassidy, J. Hofierka, B. Cunningham, C. M. Rawlins, C. H. Patterson, and D. G. Green

arXiv:2303.05359, Phys. Rev. A (Letter) 109, L040801 (2024).

Many-body theory calculations of positronic-bonded molecular dianions
J. P. Cassidy, J. Hofierka, B. Cunningham, C. M. Rawlins, and D. G. Green,
J. Chem. Phys. 160, 084304
, Emerging Investigators Special Collection 2024 [highly-selective annual issue], and JCP Featured article.

Many-body theory calculations of positron binding to hydrogen cyanide
J. Hofierka, B. Cunningham and D. G. Green,
The European Journal of Physics D 78, 37 (2024).

Many-body theory calculations of positron scattering and annihilation in noble-gas atoms, via solution of Bethe-Salpeter equations using the Gaussian-basis code EXCITON+,
J. Hofierka, B. Cunningham, C. M. Rawlins, D. T. Waide and D. G. Green,
Frontiers in Physics 11, 1227652 (2023).

Many-body theory calculations of positron scattering and annihilation in H2, N2 and CH4,
C. M. Rawlins*, J. Hofierka*, B. Cunningham, C. H. Patterson and D. G. Green (*) joint-first authors

arXiv:2303.02083, Phys. Rev. Lett. 130, 263001 (2023) [open access]

Many-body theory for positronium scattering and pickoff annihilation in noble-gas atoms,
A. R. Swann, D. G. Green, G. F. Gribakin,
arXiv:2105.06749, Phys. Rev. A 107, 042802 (2023) [Open Access]

Positron cooling via inelastic collisions in CF4 and N2 gases,
A. R. Swann and D. G. Green, arXiv:2105.06904, Phys. Rev. Lett. 130 033001 (2023).

Many-body theory of positron binding in polyatomic molecules
J. Hofierka, B. Cunningham, C. M. Rawlins, C. H. Patterson, D. G. Green, Nature 606, 688 (2022) [open access].

BSHF: A program to solve the Hartree–Fock equations for arbitrary central potentials using a B-spline basis,
D. T. Waide, D. G. Green, G. F. Gribakin,
Comput. Phys. Commun. 250, 107112 (2020).

Many-body theory for positronium-atom interactions,
D. G. Green, A. R. Swann, and G. F. Gribakin, Phys. Rev. Lett. 120, 183402 (2018)

Probing positron cooling in noble gases via annihilation γ spectra,
D. G. Green, Phys. Rev. Lett. 119, 203404 (2017).

Positron cooling and annihilation in noble gases,
D. G. Green, Phys. Rev. Lett. 119, 203403 (2017).

Comment on “Gamma-ray spectra from low-energy positron annihilation processes in molecules,
D. G. Green and G. F. Gribakin, Phys. Rev. A 
95, 036701 (2017).

γ-ray spectra and enhancement factors for positron annihilation spectra with core-electrons
D. G. Green and G. F. Gribakin, Phys. Rev. Lett. 
114, 093201 (2015).

Positron scattering and annihilation on noble gas atoms
D. G. Green, J. A. Ludlow, G. F. Gribakin, Phys. Rev. A 
90, 032712 (2014).

Positron scattering and annihilation in hydrogen-like ions
D. G. Green, G. F. Gribakin, Phys. Rev. A 
88, 032708 (2013).

Effect of positron-atom interactions on the annihilation gamma spectra of molecules,
D. G. Green, S. Saha, F. Wang, G. F. Gribakin and C. M. Surko, New. J. Phys. 14, 035021 (2012).

Comment on “Cavity Induced Shift and Narrowing of the Positronium Lyman-α Transition”,
D. G. Green and G. F. Gribakin, Phys. Rev. Lett. 106, 209301 (2011).

“Calculation of gamma spectra for positron annihilation on molecules”,
D. G. Green, S. Saha, F. Wang, G. F. Gribakin, and C. M. Surko, Mat. Sci. Forum 666, 21 (2010).


Ultraintense laser-plasma interactions

(my close collaborator and friend in this work, Chris Harvey, who was a Research Fellow of similar age, is deceased).

SIMLA: Simulating laser-particle interactions via classical and quantum electrodynamics
D. G. Green and C. N. Harvey, Comput. Phys. Commun. 192, 313(2015).

Transverse spreading of electrons in high-intensity laser fields
D. G. Green and C. N. Harvey, Phys. Rev. Lett. 
112, 164801 (2014).

“Numerical modelling of Compton scattering in ultra-intense laser pulses”,
C. N. Harvey and D. G. Green,
J. Phys. Conf. Ser. 594, 012052 (2015).


Atomic and Molecular collisions, cold molecules and quantum chaos

The approach to chaos in ultracold atomic and molecular physics: statistics of near-threshold bound states for Li+CaH and Li+CaF
M. D. Frye, M. Morita, C. L. Vaillant, D. G. Green, Jeremy M. Hutson
Phys. Rev. A 
93, 052713 (2016)

Quantum chaos in ultracold collisions between Yb(1S0) and Yb(3P2)
D. G. Green, C. L. Vaillant, M. D. Frye, M. Morita, J. M. Hutson
Phys. Rev. A 
93, 022703 (2016).


Chapters in Books

D. G. Green and G. F. Gribakin, Enhancement factors for positron annihilation on valence and core orbitals of noble-gas atoms. In: Y. Wang, M. Thachuk, R. Krems, and J. Maruani (eds.), Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics, Progress in Theoretical Chemistry and Physics, vol. 31 (Springer, 2018), pp. 243-263. arXiv:1703.06980 ; Original publication

Other publications

A Quantised Cyclin-Based Cell Cycle Model
C. Emerson, L. Bennie, N. M. Byrne, D. G. Green, F. J. Currell, J. A. Coulter,
Journal of Biotechnology and Biomedicine, accepted (2023).