Efficient Parallel Graph Processing on GPU using Approximate Computing

Somesh Singh

(https://ssomesh.github.io/)

Department of Computer Science and Engineering Indian Institute of Technology Madras, India

May 6, 2021

Graffix : Techniques targeting GPU-specific aspects for parallel approximate graph processing

 ${\tt Graprox}$: Generalized techniques for parallel approximate graph processing

Research Interests

Graphs are Ubiquitous

Social Network

Somesh Singh

Efficient Parallel Graph Processing on GPU using Approximate Computing

Knowledge Network

Road Network

3 / 27

Challenges in Parallel Graph Processing

des	st_															_					
1	5	0	3	2	5	2	3	4	0	4	9	6	8	7	9	10	11	12	4	12	9
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21

DIC													
0	2	2	4	6	8	9	12	14	16	18	19	21	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13

CSR representation

4 / 27

Challenges in Parallel Graph Processing

Assumptions

- vertex-centric model of parallelization
- propagation-based graph kernels

```
1 Graph G(V,E) = read_input();
2 v.dist = \infty \forall v \in V:
3 source.dist = 0;
4 Worklist wl = {source}:
5 do {
   changed = false;
   forall Node u : wl do {
7
8
     for Node v : G.neighbors(u) do {
     newVal = dist[u] + e_{uv}.wt();
9
     if(newVal < dist[v]) {</pre>
10
       oldVal = atomicMin(&dist[v], newVal);
11
       if(newVal < oldVal) {</pre>
12
13
        wl.push(v);
14
        changed = true;
       } } } }
15
    while(changed);
16
  }
```

Challenges in Parallel Graph Processing

Assumptions

- vertex-centric model of parallelization
- propagation-based graph kernels

```
1 Graph G(V,E) = read_input();
2 v.dist = \infty \forall v \in V:
3 source.dist = 0;
4 Worklist wl = {source}:
5 do {
   changed = false;
   forall Node u : wl do {
7
8
    for Node v : G.neighbors(u) do {
     newVal = dist[u] + e_{uv}.wt();
9
     if(newVal < dist[v]) {</pre>
      oldVal = atomicMin(&dist[v], newVal);
      if(newVal < oldVal) {</pre>
       wl.push(v);
       changed = true;
       16 } while(changed);
```

- Irregular accesses: The indirection "dist[dest[id]]".
- Memory-latency bound.
- Load imbalance: Skew in vertex degrees.

Somesh Singh

- Combine *parallelization* with *approximate computing* to make graph processing more efficient at the expense of accuracy.
- Provide tunable knobs to control the performance-accuracy trade-off.

- Combine *parallelization* with *approximate computing* to make graph processing more efficient at the expense of accuracy.
- Provide tunable knobs to control the performance-accuracy trade-off.

Graffix techniques

- Improving Memory Coalescing
 - make the graph layout more *structured* to improve locality.
 - renumber the graph vertices and replicate a select set of vertices.
 - 2 Reducing Memory Latency
 - process *well-connected* sub-graphs, iteratively, inside shared memory.
 - 3 Reducing Thread Divergence
 - normalize degrees across nodes assigned to a warp.

 Accesses to global memory by warp-threads are *coalesced* into a single memory transaction if warp-threads access a contiguous block of memory.

• Irregular memory accesses are not coalesced; translate into several load/store transactions.

Image Source: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

Somesh Singh

Improving Memory Coalescing

Vertex Renumbering

• Assign *nearby* ids to vertices to be accessed by warp-threads.

Improving Memory Coalescing

Vertex Renumbering

• Assign *nearby* ids to vertices to be accessed by warp-threads.

Approach

- Perform BFS from a highest outdegree node.
- Assign ids level-by-level; incrementally in a round-robin fashion at a level.

Approach

- Start a level at a multiple of $k \mid 1 \leq k \leq$ warp-size \rightarrow creates *holes*.
- Divide the node array (after renumbering) into chunks of size k.

Renumbered graph

Creation of *holes* after renumbering

k = 8

Vertex Replication

- A node occurs exactly once, so it cannot be nearby all its neighbors even after the renumbering.
- Replication brings such a node *close* to its otherwise *far* neighbors.

Vertex Replication

- A node occurs exactly once, so it cannot be nearby all its neighbors even after the renumbering.
- Replication brings such a node *close* to its otherwise *far* neighbors.

Approach

• If a node is well-connected to a chunk, replicate the node in a chunk in the previous BFS level.

 $\mathsf{connectedness}_{\mathsf{chunk}}^{\mathsf{node}} \stackrel{\Delta}{=} \left(\frac{\# \mathsf{ edges to chunk from a node}}{\# \mathsf{ non-hole nodes in chunk}} \right) \ge threshold$

- Distribute the outgoing edges of a node among its copies.
- Add edges from node's replica to its 2-hop neighbors inside the chunk.
- Perform a merge operation on the values of the replicas after each iteration.

Somesh Singh

Improving Memory Coalescing

- Node 0 is well-connected to the chunk 16..23
- connectedness⁰_{16..23} = $\frac{4}{6}$ = 0.67 \ge 0.5 (*threshold*)
- Node 0 is replicated in the chunk 0..7; its replica is assigned id 6.

- Shared memory (or scratchpad memory) is a software managed cache.
- Accesses are as fast as registers, if there are no bank conflicts, even for irregular accesses.
- Useful if there is enough *reuse* of the data brought into shared memory.

Reducing Memory Latency using Shared Memory

- Clustering-coefficient measures the degree to which nodes in a graph tend to "cluster".
- Local clustering-coefficient (LCC) of a node, X :

 $LCC_X = \frac{\# \text{ pairs of X's neighbors that are neighbors}}{\# \text{ pairs of X's neighbors}}$

of pairs of F's neighbors that are neighbors = 1
of pairs of F's neighbors =
$$\binom{3}{2} = 3$$

LCC_F = $\frac{1}{3}$

Reducing Memory Latency using Shared Memory

Vertices with *local clustering coefficient* (LCC) \geq *threshold* are more frequently accessed in iterative processing.

Reducing Memory Latency using Shared Memory

Vertices with *local clustering coefficient* (LCC) \geq *threshold* are more frequently accessed in iterative processing.

Approach

- Increase LCC of node if LCC \leq *threshold* and LCC \sim *threshold*.
- Boost LCC of node if LCC \geq *threshold*.
- Cap on the total number of additional edges added in the graph.

- All threads of a warp execute in lockstep.
- When there is load-imbalance among warp threads, other threads have to wait for the slowest thread.

Thread divergence due to load-imbalance

Reducing Thread Divergence

Make node degrees *nearly* uniform within each warp.

Make node degrees *nearly* uniform within each warp.

Approach

- Add edges to the nodes that are deficient in their connectivity.
- Add edges between 2-hop neighbors for faster convergence.
- Increase the degree of the candidate nodes to be close to α % of max. degree (e.g., 85%); α is tunable.

CPU	Intel Xeon E5-2650 v2 (32 cores, 2.6 GHz, 96 GB RAM).
GPU	Nvidia Pascal P100 (56 SMXs, 3584 cores, 16 GB global memory with bandwidth of 732 GB/s).
Software	CentOS 6.5, gcc 4.8.2, CUDA 8.0

Machine Configuration

Graph	$ V imes 10^6$	$ E imes 10^6$	Graph type
USA-road	23.9	57.7	Road network, large diameter
LiveJournal	4.8	68.9	Social network, small diameter
rmat26	67.1	1073.7	Synthetic scale-free graph
random26	67.1	1073.7	Synthetic random graph
twitter	41.6	1468.3	Twitter graph 2010 snapshot

Input Graphs

Graph Algorithms

- Single Source Shortest Path (Distance) computation (SSSP)
- PageRank computation (PR)
- Strongly Connected Component computation (SCC)
- Minimum Spanning Tree Weight computation (MST)
- Betweenness Centrality computation (BC)

Baselines

- Baseline I: Our exact parallel versions of SSSP, PR, SCC, MST, BC.
- Baseline II: SSSP, PR, BC from Tigr*.
- Baseline III: SSSP, PR, BC from Gunrock[†].

Somesh Singh

^{*}https://github.com/AutomataLab/Tigr

[†]https://github.com/gunrock/gunrock

Results

Improving Memory Coalescing

	Baseline I	Baseline II	Baseline III
Mean Speedup	1.16×	1.10×	1.14 imes
Mean Inaccuracy	10%	9%	9%

Effect of varying the threshold for node replication on memory coalescing. (Chunk size is set to 16.)

Takeaway:

Desired accuracy and performance for an algorithm – input graph pair can be achieved by tuning the chunk size and the threshold for node replication.

Somesh Singh

Efficient Parallel Graph Processing on GPU using Approximate Computing

Results Reducing Memory Latency

	Baseline I	Baseline II	Baseline III
Mean Speedup	1.20×	1.19×	1.19 imes
Mean Inaccuracy	13%	12%	12%

Takeaway:

Appreciable speedup, with low inaccuracy, can be achieved by processing well-connected subgraphs inside shared memory.

Somesh Singh

Results Reducing Thread Divergence

	Baseline I	Baseline II	Baseline III
Mean Speedup	$1.07 \times$	1.03×	1.07 imes
Mean Inaccuracy	8%	8%	8%

Effect of varying the threshold for degree normalization.

Takeaway:

Small speedup with low inaccuracy can be achieved using a low threshold for degree normalization.

Somesh Singh

Efficient Parallel Graph Processing on GPU using Approximate Computing

Graprox : Techniques for Parallel Approximate Graph Processing

Reduced execution

- cut-short the number of outerloop iterations.
- Partial graph processing
 - process only a subset of the edges in each outerloop iteration.
- Approximate graph representation
 - merge nodes with overlapping neighbors, based on Jaccard's similarity.

- Cut-short the number of outerloop iterations based on online stopping criteria.
- Helpful when majority of work gets done in the initial iterations.

SSSP computation on rmat26 graph

- Process only a subset of the edges in each outerloop iteration.
- At each node, select the edges to be processed; ignore others.
- Helps improve performance since the work done per iteration (measured as number of edges traversed) is less.

For SSSP computation

- Lossy graph compression by merging nodes with overlapping neighbors.
- Jaccard's coefficient J_{ij} , for vertices v_i and v_j with sets of neighbors $N(v_i)$ and $N(v_j)$ respectively, is:

$$J_{ij} = \frac{|N(v_i) \cap N(v_j)|}{|N(v_i) \cup N(v_j)|}$$

• If there is a triangle a-b-c and a-b get merged:

	Technique	Mean	Mean
		Speedup	Inaccuracy
	Outer-loop iterations	$1.34 \times$	6.07%
SSSP	Partial processing of graph	$1.38 \times$	16.19%
	Approx. graph representation	$1.22 \times$	13.87%
	Outer-loop iterations	$1.18 \times$	16.05%
MST	Partial processing of graph	$1.65 \times$	17.44%
	Approx. graph representation	$1.44 \times$	15.17%
	Outer-loop iterations	1.25×	18.26%
SCC	Partial processing of graph	1.32×	19.61%
	Approx. graph representation	$1.45 \times$	20.11%
	Outer-loop iterations	2.03×	2.75%
PR	Partial processing of graph	1.43×	15.74%
	Approx. graph representation	1.37×	13.70%

Takeaway:

Approximate computing techniques are consistently helpful in improving the execution performance of graph analytics in exchange for inaccuracy.

- Parallel graph processing is challenging due to *irregularity* in the data-access, control-flow, and communication patterns.
- We proposed techniques for making graphs more amenable to processing on GPU.
- Our techniques provide *tunable knobs* to control the performance-accuracy trade-off in graph applications.
- The techniques are generally applicable to a large class of parallel graph algorithms and input graphs of varying characteristics.
- Approximate computing combined with parallelization promises to make heavy-weight graph computation practical, as well as, scalable.

- High-performance computing
- High-performance graph analytics

Problems of Interest

- Scalable graph mining
- Optimizing parallel sparse matrix computations
- Parallel approximate processing on dynamic graphs

Parallel computing

- High-performance computing
- High-performance graph analytics

Problems of Interest

- Scalable graph mining
- Optimizing parallel sparse matrix computations
- Parallel approximate processing on dynamic graphs

Thank You

Parallel computing