
Efficient Parallel Graph Processing on GPU
using Approximate Computing

Somesh Singh
(https://ssomesh.github.io/)

Department of Computer Science and Engineering

Indian Institute of Technology Madras, India

May 6, 2021

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 1 / 27

https://ssomesh.github.io/

Outline

• Graffix : Techniques targeting GPU-specific aspects for parallel
approximate graph processing

• Graprox : Generalized techniques for parallel approximate graph
processing

• Research Interests

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 2 / 27

Graphs are Ubiquitous

Biological Network Knowledge Network

Social Network Road Network
Image Source: Google Images

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 3 / 27

Challenges in Parallel Graph Processing

0

5

3

2

4

6

11

9

12

10

1 7 8

T1

T2 T3

0 2 2 4 6 8 9 12 14 16 18 19 21 22

0 1 2 3 4 5 6 10 11 12 137 8 9

0 1 2 3 4 5 6 10 11 127 8 9

1 5 0 3 2 5 2

0 1 2 3 4 5 6 10 11 12 137 8 9

10 11 12

14 15 16 17 18 19 20 21

3 4 0 4 9 6 8 7 9 124 9

src

dist

dest

CSR representation

Assumptions

• vertex-centric model of parallelization

• propagation-based graph kernels

1 Graph G(V,E) = read_input();

2 v.dist = ∞ ∀ v ∈ V;

3 source.dist = 0;

4 Worklist wl = {source};

5 do {

6 changed = false;

7 forall Node u : wl do {

8 for Node v : G.neighbors(u) do {

9 newVal = dist[u] + euv.wt();
10 if(newVal < dist[v]) {

11 oldVal = atomicMin(&dist[v], newVal);

12 if(newVal < oldVal) {

13 wl.push(v);

14 changed = true;

15 } } } }

16 } while(changed);

Irregular accesses: The indirection “dist[dest[id]]”.

Memory-latency bound.

Load imbalance: Skew in vertex degrees.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 4 / 27

Challenges in Parallel Graph Processing

0

5

3

2

4

6

11

9

12

10

1 7 8

T1

T2 T3

0 2 2 4 6 8 9 12 14 16 18 19 21 22

0 1 2 3 4 5 6 10 11 12 137 8 9

0 1 2 3 4 5 6 10 11 127 8 9

1 5 0 3 2 5 2

0 1 2 3 4 5 6 10 11 12 137 8 9

10 11 12

14 15 16 17 18 19 20 21

3 4 0 4 9 6 8 7 9 124 9

src

dist

dest

CSR representation

Assumptions

• vertex-centric model of parallelization

• propagation-based graph kernels

1 Graph G(V,E) = read_input();

2 v.dist = ∞ ∀ v ∈ V;

3 source.dist = 0;

4 Worklist wl = {source};

5 do {

6 changed = false;

7 forall Node u : wl do {

8 for Node v : G.neighbors(u) do {

9 newVal = dist[u] + euv.wt();
10 if(newVal < dist[v]) {

11 oldVal = atomicMin(&dist[v], newVal);

12 if(newVal < oldVal) {

13 wl.push(v);

14 changed = true;

15 } } } }

16 } while(changed);

Irregular accesses: The indirection “dist[dest[id]]”.

Memory-latency bound.

Load imbalance: Skew in vertex degrees.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 4 / 27

Challenges in Parallel Graph Processing

0

5

3

2

4

6

11

9

12

10

1 7 8

T1

T2 T3

0 2 2 4 6 8 9 12 14 16 18 19 21 22

0 1 2 3 4 5 6 10 11 12 137 8 9

0 1 2 3 4 5 6 10 11 127 8 9

1 5 0 3 2 5 2

0 1 2 3 4 5 6 10 11 12 137 8 9

10 11 12

14 15 16 17 18 19 20 21

3 4 0 4 9 6 8 7 9 124 9

src

dist

dest

CSR representation

Assumptions

• vertex-centric model of parallelization

• propagation-based graph kernels

1 Graph G(V,E) = read_input();

2 v.dist = ∞ ∀ v ∈ V;

3 source.dist = 0;

4 Worklist wl = {source};

5 do {

6 changed = false;

7 forall Node u : wl do {

8 for Node v : G.neighbors(u) do {

9 newVal = dist[u] + euv.wt();
10 if(newVal < dist[v]) {

11 oldVal = atomicMin(&dist[v], newVal);

12 if(newVal < oldVal) {

13 wl.push(v);

14 changed = true;

15 } } } }

16 } while(changed);

Irregular accesses: The indirection “dist[dest[id]]”.

Memory-latency bound.

Load imbalance: Skew in vertex degrees.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 4 / 27

Our Approach

Combine parallelization with approximate computing to make graph
processing more efficient at the expense of accuracy.

Provide tunable knobs to control the performance-accuracy trade-off.

Graffix techniques

1 Improving Memory Coalescing
make the graph layout more structured to improve locality.

renumber the graph vertices and replicate a select set of vertices.

2 Reducing Memory Latency
process well-connected sub-graphs, iteratively, inside shared memory.

3 Reducing Thread Divergence
normalize degrees across nodes assigned to a warp.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 5 / 27

Our Approach

Combine parallelization with approximate computing to make graph
processing more efficient at the expense of accuracy.

Provide tunable knobs to control the performance-accuracy trade-off.

Graffix techniques

1 Improving Memory Coalescing
make the graph layout more structured to improve locality.

renumber the graph vertices and replicate a select set of vertices.

2 Reducing Memory Latency
process well-connected sub-graphs, iteratively, inside shared memory.

3 Reducing Thread Divergence
normalize degrees across nodes assigned to a warp.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 5 / 27

1 Improving Memory Coalescing
About Memory Coalescing

Accesses to global memory by warp-threads are coalesced into a single
memory transaction if warp-threads access a contiguous block of
memory.

0 32 64 96 128 160 192 224 256 288 320 352 384

addresses from a warp

Irregular memory accesses are not coalesced; translate into several
load/store transactions.

Image Source: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 6 / 27

Improving Memory Coalescing

Vertex Renumbering

Assign nearby ids to vertices to be accessed by warp-threads.

Approach

Perform BFS from a highest outdegree node.

Assign ids level-by-level; incrementally in a round-robin fashion at a
level.

15

4

1

18

7

12

10

0

17

8

6

5

14

13

19

3

9

16

2

11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

offset

edges

17 18 19 20 21 22 23 24 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 7

4 5 6 7 8 13 14 0

13 16 17 18 19 19 19 20 21 22 23 24 24 25 25 26 26 26 26

12 15 17 18 11 15 19 19 15 6 17 19 12 19 18 6 19

node attributes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

edge attributes

17 18 19 20 21 22 23 24 25

10

Original graph

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 7 / 27

Improving Memory Coalescing

Vertex Renumbering

Assign nearby ids to vertices to be accessed by warp-threads.

Approach

Perform BFS from a highest outdegree node.

Assign ids level-by-level; incrementally in a round-robin fashion at a
level.

15

4

1

18

7

12

10

0

17

8

6

5

14

13

19

3

9

16

2

11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

offset

edges

17 18 19 20 21 22 23 24 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 7

4 5 6 7 8 13 14 0

13 16 17 18 19 19 19 20 21 22 23 24 24 25 25 26 26 26 26

12 15 17 18 11 15 19 19 15 6 17 19 12 19 18 6 19

node attributes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

edge attributes

17 18 19 20 21 22 23 24 25

10

Original graph
Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 7 / 27

Improving Memory Coalescing

Approach

Start a level at a multiple of k
∣∣ 1 ≤ k ≤ warp-size → creates holes.

Divide the node array (after renumbering) into chunks of size k .

Renumbered graph

0 1 2 3 4 5

8 12
9 10 11

14 16 18 20 21
13 15 17 19

Creation of holes after renumbering

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 21 22 2317 18 19

k = 8

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 8 / 27

Improving Memory Coalescing

Vertex Replication

A node occurs exactly once, so it cannot be nearby all its neighbors
even after the renumbering.

Replication brings such a node close to its otherwise far neighbors.

Approach

If a node is well-connected to a chunk, replicate the node in a chunk
in the previous BFS level.

connectednessnodechunk
∆
=

(
edges to chunk from a node

non-hole nodes in chunk

)
≥ threshold

Distribute the outgoing edges of a node among its copies.

Add edges from node’s replica to its 2-hop neighbors inside the chunk.

Perform a merge operation on the values of the replicas after each
iteration.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 9 / 27

Improving Memory Coalescing

Vertex Replication

A node occurs exactly once, so it cannot be nearby all its neighbors
even after the renumbering.

Replication brings such a node close to its otherwise far neighbors.

Approach

If a node is well-connected to a chunk, replicate the node in a chunk
in the previous BFS level.

connectednessnodechunk
∆
=

(
edges to chunk from a node

non-hole nodes in chunk

)
≥ threshold

Distribute the outgoing edges of a node among its copies.

Add edges from node’s replica to its 2-hop neighbors inside the chunk.

Perform a merge operation on the values of the replicas after each
iteration.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 9 / 27

Improving Memory Coalescing

Node 0 is well-connected to the chunk 16..23

connectedness016..23 = 4
6 = 0.67 ≥ 0.5 (threshold)

Node 0 is replicated in the chunk 0..7; its replica is assigned id 6.

0 1 2 3 4 56

8
9

12
10 11

14 16 18 20 21 13 15 17 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

offset

edges

17 18 19 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

node attributes

0 3 9 12 13 14 15 21 21 22 23 24 24 24 24 25 26 27 27 27 27 28 28 28 28

8 12 14 0 9 13 15 17 19 10 11 19 11 11 11 16 17 18 19 20 21 12 13 11 12 9 19 17

Modified graph
Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 10 / 27

2 Reducing Memory Latency using Shared Memory
About Shared Memory

Shared memory (or scratchpad memory) is a software managed cache.

Accesses are as fast as registers, if there are no bank conflicts, even
for irregular accesses.

Useful if there is enough reuse of the data brought into shared
memory.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 11 / 27

Reducing Memory Latency using Shared Memory

Clustering-coefficient measures the degree to which nodes in a graph
tend to “cluster”.

Local clustering-coefficient (LCC) of a node, X :

LCCX =
pairs of X’s neighbors that are neighbors

pairs of X’s neighbors

F

B

D

G

K

H

A

C

E

of pairs of F’s neighbors that are neighbors = 1

of pairs of F’s neighbors =
(

3
2

)
= 3

LCCF = 1
3

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 12 / 27

Reducing Memory Latency using Shared Memory

Vertices with local clustering coefficient (LCC) ≥ threshold are more
frequently accessed in iterative processing.

Approach

Increase LCC of node if LCC ≤ threshold and LCC ∼ threshold .

Boost LCC of node if LCC ≥ threshold .

Cap on the total number of additional edges added in the graph.

N1

A B

C D

E

N1

A B

C D

E

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 13 / 27

Reducing Memory Latency using Shared Memory

Vertices with local clustering coefficient (LCC) ≥ threshold are more
frequently accessed in iterative processing.

Approach

Increase LCC of node if LCC ≤ threshold and LCC ∼ threshold .

Boost LCC of node if LCC ≥ threshold .

Cap on the total number of additional edges added in the graph.

N1

A B

C D

E

N1

A B

C D

E

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 13 / 27

3 Reducing Thread Divergence
About Thread Divergence

All threads of a warp execute in lockstep.

When there is load-imbalance among warp threads, other threads
have to wait for the slowest thread.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Thread divergence due to load-imbalance

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 14 / 27

Reducing Thread Divergence

Make node degrees nearly uniform within each warp.

Approach

Add edges to the nodes that are deficient in their connectivity.

Add edges between 2-hop neighbors for faster convergence.

Increase the degree of the candidate nodes to be close to α% of max.
degree (e.g., 85%); α is tunable.

T2 T1

A

B C

D

G

H

I

J

K

L

M

EF

N

P
T2 T1

A

B C

D

G

H

I

J

K

L

M

EF

N

P

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 15 / 27

Reducing Thread Divergence

Make node degrees nearly uniform within each warp.

Approach

Add edges to the nodes that are deficient in their connectivity.

Add edges between 2-hop neighbors for faster convergence.

Increase the degree of the candidate nodes to be close to α% of max.
degree (e.g., 85%); α is tunable.

T2 T1

A

B C

D

G

H

I

J

K

L

M

EF

N

P
T2 T1

A

B C

D

G

H

I

J

K

L

M

EF

N

P

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 15 / 27

Experimental Setup

CPU Intel Xeon E5-2650 v2 (32 cores, 2.6 GHz, 96 GB RAM).

GPU
Nvidia Pascal P100
(56 SMXs, 3584 cores, 16 GB global memory with
bandwidth of 732 GB/s).

Software CentOS 6.5, gcc 4.8.2, CUDA 8.0

Machine Configuration

Graph
|V | |E |

Graph type×106 ×106

USA-road 23.9 57.7 Road network, large diameter
LiveJournal 4.8 68.9 Social network, small diameter

rmat26 67.1 1073.7 Synthetic scale-free graph
random26 67.1 1073.7 Synthetic random graph

twitter 41.6 1468.3 Twitter graph 2010 snapshot

Input Graphs

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 16 / 27

Experimental Setup

Graph Algorithms

Single Source Shortest Path (Distance) computation (SSSP)

PageRank computation (PR)

Strongly Connected Component computation (SCC)

Minimum Spanning Tree Weight computation (MST)

Betweenness Centrality computation (BC)

Baselines

Baseline I: Our exact parallel versions of SSSP, PR, SCC, MST, BC.

Baseline II: SSSP, PR, BC from Tigr∗.

Baseline III: SSSP, PR, BC from Gunrock†.

∗https://github.com/AutomataLab/Tigr
†https://github.com/gunrock/gunrock

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 17 / 27

https://github.com/AutomataLab/Tigr
https://github.com/gunrock/gunrock

Results
Improving Memory Coalescing

Baseline I Baseline II Baseline III
Mean Speedup 1.16× 1.10× 1.14×

Mean Inaccuracy 10% 9% 9%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

sp
e
e
d

u
p

in
a
ccu

ra
cy

 (%
)

threshold on connectedness of node to chunk

SSSP, twitter speedup
inaccuracy

Effect of varying the threshold for node replication on memory coalescing.
(Chunk size is set to 16.)

Takeaway:

Desired accuracy and performance for an algorithm – input graph pair can be
achieved by tuning the chunk size and the threshold for node replication.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 18 / 27

Results
Reducing Memory Latency

Baseline I Baseline II Baseline III
Mean Speedup 1.20× 1.19× 1.19×

Mean Inaccuracy 13% 12% 12%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

sp
e
e
d

u
p

in
a
ccu

ra
cy

 (%
)

threshold for local clustering coefficient

SSSP, twitter speedup
inaccuracy

Effect of varying the LCC threshold on memory latency.

Takeaway:

Appreciable speedup, with low inaccuracy, can be achieved by processing
well-connected subgraphs inside shared memory.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 19 / 27

Results
Reducing Thread Divergence

Baseline I Baseline II Baseline III
Mean Speedup 1.07× 1.03× 1.07×

Mean Inaccuracy 8% 8% 8%

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

sp
e
e
d

u
p

in
a
ccu

ra
cy

 (%
)

threshold for degree normalization

SSSP, twitter speedup
inaccuracy

Effect of varying the threshold for degree normalization.

Takeaway:

Small speedup with low inaccuracy can be achieved using a low threshold for
degree normalization.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 20 / 27

Graprox : Techniques for Parallel Approximate Graph
Processing

1 Reduced execution
I cut-short the number of outerloop iterations.

2 Partial graph processing
I process only a subset of the edges in each outerloop iteration.

3 Approximate graph representation
I merge nodes with overlapping neighbors, based on Jaccard’s similarity.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 21 / 27

Reduced Execution

Cut-short the number of outerloop iterations based on online stopping
criteria.

Helpful when majority of work gets done in the initial iterations.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

iteration (%)

#
n

o
d

e
s

w
h

o
se

d
is

ta
n

ce
s

ch
a

n
g

e
(i

n
m

ill
io

n
s)

SSSP computation on rmat26 graph

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 22 / 27

Partial Graph Processing

Process only a subset of the edges in each outerloop iteration.

At each node, select the edges to be processed; ignore others.

Helps improve performance since the work done per iteration
(measured as number of edges traversed) is less.

A

B C D

EF

3

8

2

4

4

7
5

A

B C D

EF

3
2

4

4

7
5

3 3

For SSSP computation

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 23 / 27

Approximate Graph Representation

Lossy graph compression by merging nodes with overlapping
neighbors.

Jaccard’s coefficient Jij , for vertices vi and vj with sets of neighbors
N(vi) and N(vj) respectively, is:

Jij =
|N(vi) ∩ N(vj)|
|N(vi) ∪ N(vj)|

If there is a triangle a-b-c and a-b get merged:

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 24 / 27

Results
Graprox

Technique Mean Mean
Speedup Inaccuracy

Outer-loop iterations 1.34× 6.07%
SSSP Partial processing of graph 1.38× 16.19%

Approx. graph representation 1.22× 13.87%
Outer-loop iterations 1.18× 16.05%

MST Partial processing of graph 1.65× 17.44%
Approx. graph representation 1.44× 15.17%

Outer-loop iterations 1.25× 18.26%
SCC Partial processing of graph 1.32× 19.61%

Approx. graph representation 1.45× 20.11%
Outer-loop iterations 2.03× 2.75%

PR Partial processing of graph 1.43× 15.74%
Approx. graph representation 1.37× 13.70%

Takeaway:

Approximate computing techniques are consistently helpful in improving the
execution performance of graph analytics in exchange for inaccuracy.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 25 / 27

In Summary

1 Parallel graph processing is challenging due to irregularity in the
data-access, control-flow, and communication patterns.

2 We proposed techniques for making graphs more amenable to
processing on GPU.

3 Our techniques provide tunable knobs to control the
performance-accuracy trade-off in graph applications.

4 The techniques are generally applicable to a large class of parallel
graph algorithms and input graphs of varying characteristics.

5 Approximate computing combined with parallelization promises to
make heavy-weight graph computation practical, as well as, scalable.

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 26 / 27

Research Interests

• High-performance computing • Parallel computing
• High-performance graph analytics

Problems of Interest

Scalable graph mining

Optimizing parallel sparse matrix computations

Parallel approximate processing on dynamic graphs

Thank You

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 27 / 27

Research Interests

• High-performance computing • Parallel computing
• High-performance graph analytics

Problems of Interest

Scalable graph mining

Optimizing parallel sparse matrix computations

Parallel approximate processing on dynamic graphs

Thank You

Somesh Singh Efficient Parallel Graph Processing on GPU using Approximate Computing 27 / 27

