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Abstract—We introduce the Structure-Aware Parallel Counting
(SAPCo) Sort algorithm that optimizes performance of degree-
ordering, a key operation in graph analytics. SAPCo leverages the
skewed degree distribution to accelerate sorting. The evaluation
for graphs of up to 3.6 billion vertices shows that SAPCo sort
is, on average, 1.7-33.5 times faster than state-of-the-art sorting
algorithms such as counting sort, radix sort, and sample sort.

Index Terms—High Performance Computing, Graph Al-
gorithms, Degree-Ordering, Sorting Algorithms, Real-World
Graphs, Structure-Aware Algorithms

I. INTRODUCTION

In degree-ordering, vertices of a graph are ordered based
on their degrees. Degree-ordering is a basic tool in several
graph algorithms such as [1l], [2l], [3l], [4], [5], 6], [7] and
its efficiency plays an important role in processing large and
fast-growing real-world graphs.

Many real-world graphs derived from bioinformatics, social
networks, and the world-wide web show a skewed degree
distribution, following a power-law distribution: a small
fraction of vertices are connected to a disproportionately large
fraction of other vertices.

Several sorting algorithms with optimized complexities and
implementations such as [8], [9, [LO], [L1f], [12], [L3]], [14],
[L5], [L6] have been introduced; however, they are not well-
adjusted for real-world graphs. The parallel algorithms that
work based on sample sort [9] and radix sort [8]], move
elements several times until they are accommodated in their
final places. On the other hand, counting sort [§] makes
advantage of writing elements directly in their final places
and has a complexity of O(n) (while comparison-based sorting
algorithms have a complexity of O(nlogn)); but its paralleliza-
tion is restricted by the range of values.

In this paper, we introduce the Structure-Aware Parallel
Counting (SAPCo) Sort algorithm that exploits the skewed
degree distribution of real-world graphs to accelerate degree-
ordering. The evaluation of SAPCo in comparison to state-
of-the-art sample sort and radix sort algorithms shows that
SAPCo is 1.7-4.0 times faster.

II. BACKGROUND: COUNTING SORT

For sorting an input array containing n integer values in
range [0, R), sequential counting sort performs 3 steps:

Step 1. The input array is read and a counters array of length
R is used to count the number of times different
unique values occur in the input array.

Step 2. To specify the insertion point of the first occurrence
of unique values in the output array, the prefix sum
of counters is calculated and stored in the Insertion
Points (IP) array. If value v appears r = counters,
times in the input array, [P reserves space for all r
repetitions of v as I P, = I P, + counters,,.

Step 3. The input array is read again and values are placed in
the output array using I P: After reading an element
with value v, it is written on an index of the output
array that is identified by the insertion point, I P,, and
IP, is incremented to be ready for the next v.

As the counters array is not needed after Step 2, its
allocated memory is used for I P; however, we use different
names to mention distinct usages and contents.

Parallel counting sort, is performed in two ways:

I. Shared IP: Threads read partitions of the input array and
atomically increment the shared counters (Step 1), IP
is calculated by parallel prefix sum (Step 2), and threads
read the input array and use atomic memory accesses to
get an insertion point from the shared /P (Step 3). To
accelerate Step 1, per-thread counters can be used to
avoid atomic memory accesses.

II. Private IP: The input array is divided into partitions
and per-partition counters arrays are allocated. Then,
partitions are read by threads and their private counters
are set (Step 1). A global counters array is accumulated
by private counters, and the global I P is identified by
parallel prefix sum. The global I P and the partitions’
counters are used to identify the private I P of each
partition (Step 2). The input array is read again and
private I P are used to identify the index required for
writing to the output array (Step 3).

The first approach, shared IP, suffers from a great number
of atomic memory accesses during Step 3.

The applicability of the second approach, private IP, depends
on the number of partitions (which is affected by number of
cores and also affects the load balance) and the range of values,
R. For p partitions, the memory complexity is O(Rp). For a
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TABLE I: Evaluation of sorting algorithms: counting sort with Shared IP (“Cnt. Sh.”) and Private IP (“Cnt. Pr.”), IPS?Ra (radix
sort), IPS*o (sample sort), and SAPCo - “Memory Accesses” and “HW Instructions” are divided by number of elements (v
- “Memory Accesses” are load and store instructions - Failed attempts are shown by dash.

Dataset Type| |V| | Max. Performance (Milliseconds) Memory Accesses HW Instructions
(M) | Degree ||Cnt. Sh.|Cnt. Pr.| IPS2Ra | IPS*0 [SAPCol| IPS?Ra | IPS*0 | SAPCo || IPS?2Ra | IPS*0 | SAPCo
GB Roads RN | 7.7 7 463 5.0 9.9 102 | 5.0 13.8 16.7 12.1 52.0 47.2 34.6
US Roads RN | 239 8 1,334 | 10.9 25.6 22,5 | 11.0 13.8 16.5 12.0 48.9 46.1 343
Pokec SN | 1.6 | 137K 59 15.2 6.1 3.6 43 28.7 34.6 15.5 79.9 92.3 524
War Wikipedia KG| 2.1 |[1.14M 119 573 12.6 4.3 4.8 38.3 30.4 16.0 99.9 80.2 52.6
LiveJournal Links|{| SN | 52 | 150K 210 19.2 10.0 6.4 5.5 29.2 27.4 13.1 76.9 74.6 39.6
LiveJournal SN| 75 |[1.05M 315 799 23.1 9.8 8.9 354 33.8 13.2 90.6 87.0 39.8
Twitter 2010 SN | 21.3 | 422 K || 1,130 | 166 55.9 214 | 18.7 324 234 12.4 83.6 65.7 36.2
Twitter SN | 285 | 278 K || 1,324 | 213 73.1 28.6 | 20.5 34.6 29.3 12.3 87.7 76.7 35.6
Twitter-MPI SN | 41.7 | 770 K || 1,687 | 422 103 40.8 | 37.5 30.9 28.3 12.3 81.9 75.2 35.7
SK-Domain WG| 50.6 | 8.56 M || 2,286 | 6,120 130 50.1 | 33.8 31.8 26.3 12.6 82.3 70.8 36.4
Friendster SN | 65.6 | 3,615 2,765 | 394 122 65.0 | 35.7 30.9 29.0 12.1 81.0 77.6 34.7
Web-CC12 WG| 89.1 |2.33 M || 4,226 | 1,369 228 82.5 | 55.9 32.6 25.5 12.2 83.6 69.5 35.2
UK-Domain WG |105.2| 975 K || 2,280 | 629 266 100 | 57.7 374 28.9 12.1 92.9 76.9 34.6
UK-Delis WG | 109.5|1.26 M || 4,649 | 984 276 109 | 56.7 33.0 27.8 12.1 85.1 73.8 34.6
WebBase-2001 WG| 118.1| 816 K || 5,591 | 783 296 117 | 544 30.1 24.6 12.1 79.8 66.0 344
UK-Union WG | 133.6 | 6.37 M || 5,511 | 3,478 335 134 | 66.6 353 31.7 12.2 89.3 81.1 34.8
GSH 2015 WG | 988.5 | 58.8 M || 31,541 | 24,175| 2,948 936 | 467 37.1 32.0 12.2 94.7 82.4 34.5
ClueWeb09 WG | 1,685 | 6.44 M || 86,988 | 5,336 | 4,203 | 1,725 | 781 28.7 25.1 12.1 78.6 66.6 34.4
WDC 2014 WG | 1,725 | 457 M || 87,792 | 27,643 | 5,744 | 1,732 | 679 36.9 25.2 12.1 95.3 67.0 34.3
WDC 2012 WG | 3,564 | 95.0 M ||151,382| - 11,021 | 3,344 | 1,537 434 30.7 12.1 106.5 79.3 34.3

small R, p can be large enough to keep all processors busy;
however, that is not the case for degree-ordering of real-world
graphs where R may reach 95 million (Section [V). Moreover,
Step 2 (merging private counters and calculating private I P)
has a time complexity of O(Rp).

III. MOTIVATION

In power-law graphs, the number of low-degree vertices are
exponentially greater than high-degree vertices. Consequently,
in degree-ordering of these graphs, the input array has a very
small number of High-Degree Vertices (HDVs) and a huge
number of Low-Degree Vertices (LDVs).

As a result, when traversing the input array, the very small
indices of counters or IP are accessed frequently; but, the
greater indices are rarely accessed.

Since HDVs are rare and have a wide range of values, it
is more efficient to save memory and time by allocating a
shared memory array for HDVs and using atomic memory
accesses to protect it from concurrent accesses of threads
processing different partitions. In contrast, LDVs are frequent
and in a short range. So, it is more efficient to assign
per-partition private memory for them to accelerate their
accesses that form almost all of the memory accesses.

IV. SAPCO SORT ALGORITHM

Step 1. We identify the maximum degree of the graph to
set R = max_degree + 1. We set a threshold between LDVs
and HDVs: tsld = min(1000,0.5 =+ R). We set the number
of partitions to 64 x #threads and assign a private counters
(pcounters) array of size tsld for each partition. We also
create a global counters (gcounters) array of size R.

Step 2. Threads process elements in each partition of the
input array. For an element with value v, if v < tsld,
pcounters,, is incremented; otherwise, gcounters, is atomi-
cally incremented.

Step 3. For each value 0 < v < tsld, the sum of
pcounters, of different partitions is calculated and stored in
the gcounters,. By applying prefix sum on the gcounters,
the Global Insertion Points (GIP) array is identified. Then,
by using GIP and pcounters, Private Insertion Points (PIP)
arrays of LDVs of partitions are identified.

Step 4. The final pass over partitions of the input array
is performed by threads. When reading a value v, if v is a
LDV, PIP, of the partition identifies the insertion point in
the output and PIP, is incremented. If v is a HDV, the GI P,
identifies the insertion point in the output array and atomically
is increased by one.

V. EVALUATION

Table shows the real-world graph datasets from
“Konect” [17], [18], [19], “NetworkRepository’ [20], [21],
(22, [23l], [24]], “Laboratory for Web Algorithmics’
(LWA) [19], [25], [210, [26], [27], and “Web Data Com-
mons” [28], [29], [30]. Graph types are Road Network (RN),
Social Network (SN), Web Graph (WG), and Knowledge
Graph (KG). Column 3 of Table [l shows the numbers of
vertices of graph (]V]) in millions (which specifies the number
of elements in the input array, n). Column 4 of Table[l] “Max.
Degree”, shows the maximum in-degree of graphs (which
specifies the value of R in Section [[V).

We use a machine with 2 Intel® Xeon® Gold 6126 sockets;
in total, 24 cores, 24 threads, and 1.5TB memory.


http://konect.cc
http://networkrepository.co
http://law.di.unimi.it
http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/

We implemented SAPCo in the C language using the
OpenMP API [31], 1ibnuma, and papi [32]] libraries. The
gcc—9.2 used as compiler with —03 flag.

We evaluate SAPCo in comparison to counting sort, IPS?’Ra
radix sort (commit 18795bb), and IPS*o sample sort [16]
(commit d7a74ab).

Table [I| shows that SAPCo is, on average, 1.7x faster
than IPS%0, 4.0x faster than IPS?Ra, 33.5x faster than
counting sort with private IP, and 71.5x faster than counting
sort with a shared IP. Table |I| also shows that SAPCo, on
average, performs 12.6 memory accesses per vertex while,
IPS%o requires 27.4 accesses. Moreover, SAPCo requires
37.1 hardware instructions per vertex, on average while,
IPS*o requires 72.8 instructions.

VI. CONCLUSION

In this paper, we introduced the SAPCo sort algorithm that
optimizes degree-ordering of real-world graphs with power-
law degree distribution. SAPCo dedicates per-partition private
arrays for low values (i.e., low-degree vertices) that are fre-
quent while, using a global shared array for higher values
(i.e., high-degree vertices) that are rare. In this way, SAPCo
provides 1.7-4.0 times speedup in comparison to state-of-the-
art sample sort and radix sort algorithms.

CODE AVAILABILITY

Source code repository and further discussions
relating to this paper are available online in
https://blogs.qub.ac.uk/GraphProcessing/SAPCO-Sort-
Optimizing-Degree-Ordering- For-Power- Law-Graphs//.
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