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Abstract—A major challenge in processing real-world graphs
stems from poor locality of memory accesses and vertex reorder-
ing algorithms (RAs) have been proposed to improve locality by
changing the order of memory accesses.

While state-of-the-art RAs like SlashBurn, GOrder, and
Rabbit-Order effectively speed up graph algorithms, their ca-
pabilities and disadvantages are not fully understood, mainly,
for three reasons: (1) the large size of datasets, (2) the lack of
suitable measurement tools, and (3) disparate characteristics of
graphs. The paucity of analysis has also inhibited the design of
more efficient RAs.

This paper unlocks this black box by introducing a number
of tools, including: (1) a cache simulation technique for pro-
cessing large graphs, (2) the Neighbour to Neighbour Average
ID Distance (N2N AID) as a spatial locality metric, (3) the
degree distributions of simulated cache miss rate and AID to
investigate how locality of different vertices is affected by RAs,
and (4) “effective cache size” to measure how much of cache
capacity is used to support random accesses.

We introduce (1) asymmetricity degree distribution, (2) degree
range decomposition, and (3) push and pull locality to present
a structural analysis of different types of real-world graphs by
explaining their contrasting behaviours in confronting RAs.

Finally, we propose a number of improvements for RAs using
the analysis provided in this paper.

Index Terms—Graph processing, Graph reordering, Memory
locality, High performance computing, Graph algorithms

I. INTRODUCTION

Among data-intensive problems, graph processing is par-
ticularly challenging due to high memory bandwidth require-
ments. Many real-world graphs, such as those derived from
social networks and the world-wide web, show a heavy-tailed
or power-law degree distribution, i.e., a very small fraction
of the vertices are connected to a disproportionately large
fraction of the edges. The large size of these graphs results in
seemingly-random memory accesses in graph traversals that
cannot be completely satisfied by the processor caches and
necessitates improving locality of accesses.

Locality is defined as “the tendency for programs to cluster
references to subsets of address space for extended peri-
ods” [1], and graph relabeling (also called “reordering” or
“renumbering”) algorithms try to increase the cache hit rate
by changing the order in which vertices are processed, and
thus the order in which random memory accesses are made.

A relabeling algorithm (RA) improves locality of a graph
traversal by assigning new IDs to vertices in a way that
increases the clustering of memory accesses into a range

that can be mostly satisfied by cache contents. However,
identifying the optimal order that delivers the best locality
is a NP-complete problem [2] and heuristics are employed in
RAs [2]–[19] based on assumptions about graph structure or
execution environment.

Some studies investigate the impact of RAs on graph
analytics [20]–[23] by evaluating the general effect of RAs
based on the execution time of graph analytics and do not
explain how RAs work or how they affect locality of different
graphs in different ways, useful for some, neutral or destructive
for others. In order to reach effective and applicable locality
optimizing algorithms, there is still a need to understand the
strengths and weaknesses of previous efforts.

A key stumbling block to analyzing RAs is the availability
of suitable metrics and tools. Numerous metrics are available,
but none is fully effective in providing insight into vertex
relabeling. Graph topology metrics [24]–[26] summarize the
characteristics of graphs independently of execution properties
like processing order and vertex ID assignment. As such,
they are great for analyzing the graph, but do not reflect
on execution efficiency. Reuse distance curves [27]–[30] are
an established means to assess the general degree of locality
in programs. In the case of graph processing, reuse distance
distributions are determined by the processing order and vertex
IDs; however, they do not facilitate analyzing the effectiveness
(or shortcomings) of RAs. Moreover, reuse distance curves are
practical only for comparing locality of a graph as a whole
and do not reveal detailed information about the impact of
RAs. The large size of graphs is another source of problems
that makes it highly time-consuming to visualize graphs, to
simulate execution, or to apply Monte Carlo-style trial and
error methods to find patterns in the execution. What is
lacking are light-weight metrics and techniques to analyze
locality at a finer scale than the whole graph.

This paper studies three state-of-the-art RAs: Slash-
Burn [10], GOrder [2], and Rabbit-Order [11]. We identify
different locality types in a parallel graph processing environ-
ment. Then we introduce a bespoke technique for each RA to
explain how it affects locality. We use real execution metrics
(such as execution time, last level misses and DTLB misses)
and degree distribution of introduced metrics to compare
contrasting effects of RAs on different graphs. To explain these
effects, we present a structural analysis of graph datasets.

The contributions of this paper are thus:
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• Introducing locality types in a parallel graph traversal,
• Introducing the Neighbour to Neighbour Average ID Dis-

tance (N2N AID) as a spatial locality metric,
• Introducing the degree distributions of simulated cache miss

rates and AID to study impacts of RAs on vertex classes,
• Introducing degree range decomposition and the degree

distribution of asymmetricity to provide structural analysis
of different graph types, and

• A characterization of how locality manifests itself differ-
ently in a push traversal vs a pull traversal.
Section II describes the background materials and terminol-

ogy. Section III explains the methodology and the datasets.
Section IV presents the RAs studied in this paper and in-
troduces the locality types. We introduce the graph-specific
cache simulation technique and the AID metric in Section V.
Section VI analyzes the RAs by extending and improving
our previous study [31]. Section VII demonstrates a structural
analysis of datasets. Finally, we present improvements to RAs
and future work in Section VIII.

II. BACKGROUND

A. Graph Representation

Graph G = (V,E) has a set of vertices V , and a set of
directed edges E. The adjacency matrix is a binary matrix
representing the graph: the element at row i and column j is
1 if E contains an edge from vertex i to j, and 0 otherwise.

We use the Compressed Sparse Columns (CSC), and Com-
pressed Sparse Rows (CSR) formats [32] for representing
topology data of graphs. CSC and CSR use two arrays: (1) an
offsets array containing |V | + 1 elements, and (2) an edges
array of |E| elements. The offsets array is indexed by a vertex
ID and specifies the index of the first edge of that vertex in
the edges array. The edges array specifies the ID of source
and destination of edges in CSC and CSR, respectively. Each
element of the offsets array has a size of 8 Bytes and each
element of the edges array has a size of 4 Bytes.

In addition to topology data, the data of vertices is stored
in an array of |V | elements and is indexed by a vertex ID.

We use graph average degree ( |E||V | ) as the threshold between
low-degree vertices (LDV) and high-degree vertices (HDV).
Vertices with degree larger than

√
|V | are called hubs (bor-

rowed from huge node definition in GOrder). Hubs are divided
into in-hubs and out-hubs. A vertex can be an in-hub if its in-
degree (the number of vertices that have edges to that vertex)
is greater than

√
|V | and can be an out-hub if the out-degree

is greater than
√
|V |.

B. Graph Traversal Model

There are many variations to graph traversal patterns de-
pending on the graph analytics algorithm evaluated. In order
to present a single, widely applicable analysis, we focus
on a Sparse Matrix-Vector (SpMV) multiplication graph
traversal model (Algorithm 1) that traverses all edges of

Algorithm 1: SpMV graph traversal

Input: G(V, E), Di

Output: Di+1

1 for v ∈ V do
2 sum = 0;
3 for u ∈ v.neighbours do
4 sum += Di[u];
5 end
6 Di+1[v] = sum;
7 end

the graph. SpMV underpins several graph analytics like Hy-
perlink Induced Topic Search [33], Belief Propagation [34],
Graph Neural Networks [35], Recurrent Neural Networks [36],
PageRank [37], and Community Detection [38], and is the
target structure of RAs.

SpMV traverses all edges of the graph which allows it to
reveal the maximum improvement provided by RAs. Other
graph analytics such as Breadth-First Search (BFS), Connected
Components (CC), and Single Source Shortest Path (SSSP)
selectively traverse edges as their execution is organized
around a frontier (worklist). For instance, the frontier in BFS
and SSSP is dependent on the start vertex. So, the memory
access pattern (i.e., locality) are unpredictable as they depend
on the specifics of the worklist content. Nonetheless, these
algorithms have dense phases where all or the majority of
the edges are processed (similar to SpMV). As the dense
phases dominate the execution time, SpMV is also a suitable
representative of these graph analytics.

C. SpMV

Algorithm 1 demonstrates the SpMV in pull direction that
we use to investigate RAs in this paper. The outer loop (Lines
1-5) traverses vertices and the inner loop (Lines 3-4) traverses
all incoming edges to the vertex. In iteration i, the vertex data
(Di+1) is calculated using the vertex data (Di) of neighbours.

D. Random and Sequential Memory Accesses

As a result of the CSC graph representation, memory
accesses for reading neighbours of a vertex (Line 3 of Al-
gorithm 1) are performed sequentially and are accelerated by
hardware prefetchers. Moreover, each edge in the edges array
is accessed only once during a SpMV traversal. So, accesses
to each element of the edges array in the topology data
are not repeated and cache lines containing these elements
show little locality for a number of consecutive accesses.

In Line 4 of Algorithm 1, a memory access is made for
reading data of vertex u (Di[u]) which is an in-neighbour of
vertex v. So, accessing data of a vertex such as u is repeated
in processing each of its out-neighbours. SpMV makes |E|
accesses to |V | elements of the data array (|E| � |V |). On
average, each vertex data is read |E||V | times; however, accesses
to the data of a vertex are dispersed among |E| accesses. In
this way, these accesses are called random.



TABLE I: Datasets
Dataset Name Source |V| (M) |E| (B) Type
WebB WebBase-2001 LWA 115 1.0 WG
TwtrMpi Twitter MPI NR 41 1.5 SN
Frndstr Friendster NR 65 1.8 SN
SK SK-Domain LWA 50 2.0 WG
WbCc Web-CC12 NR 89 2.0 WG
UKDls UK-Delis LWA 110 4.0 WG
UU UK-Union LWA 133 5.5 WG
UKDmn UK-Domain KN 105 6.6 WG
ClWb9 ClueWeb09 NR 1,700 7.9 WG

E. Graph Reordering

CPU caches try to keep the recently accessed data in
cache to accelerate execution by preventing expensive memory
accesses; however, the skewed degree distribution of large real-
world graphs results in a huge number of random accesses
that cannot be fully satisfied by cache (with limited capacity).
So, it is necessary to improve locality of random accesses to
accelerate the graph traversal.

Random accesses to data of vertices are specified by (1) the
order in which vertices are processed and (2) the number of
edges each vertex has. RAs keep the second factor unchange-
able and concentrate on the first factor: rearrange the relative
order between vertices to consequently change the order
of edges, i.e., the order of random accesses.

A RA permutes vertex IDs and receives a graph as its input
and creates a relabeling array of size |V | which is indexed
by the old ID of a vertex to specify the new ID. Then, the
CSC/CSR representations are rebuilt using the relabeling array.

F. Traversal Directions

Parallel traversal of edges of a graph is usually performed
in push or pull direction.

In pull direction each vertex reads the old data (Di) of
its in-neighbours and writes its new data (Di+1). So, random
read memory accesses are made to the old data of vertices.

In push direction, each vertex updates the new data of its
out-neighbours by its old data. So, random memory accesses
are made for writing the new data of vertices. Push direction
has an additional cost for protecting the data of vertices from
concurrent updates made by parallel processors. We focus this
study on the pull direction which is faster.

Based on the adjacency matrix definition (Section II-A),
visiting incoming edges in a pull traversal corresponds to a
column-major traversal of the adjacency matrix and visiting
outgoing edges in a push traversal corresponds to a row-major
traversal. So, a pull traversal uses the CSC format and a push
traversal uses the CSR format.

In this paper we study the pull traversal of SpMV, except
in Section VII-B where we compare push and pull traversals.

III. METHODOLOGY

A. Datasets

Table I shows the datasets and sources: “Konect” (KN) [39]–
[41], “NetworkRepository” (NR) [42]–[46], and “Laboratory
for Web Algorithmics” (LWA) [16], [41], [43], [47], [48].

TABLE II: [Real execution] Preprocessing overheads
Dataset Pre-processing Time (s) Memory Footprint (GB)

SB GO RO SB GO RO
WebB 232 327 37 35 19 62
TwtrMpi 46 5,697 67 29 23 88
Frndstr 75 4,894 139 38 30 108
SK 90 588 35 36 31 117
WbCc 81 6,587 72 46 33 122
UKDls 810 67 78 236
UU 647 80 105 329
UKDmn 1,040 69 116 394
ClWb9 591 407

Numbers of edges are in billions and numbers of vertices
are in millions, counted after removing zero degree vertices
because of their destructive effect [49]. Graph types are
WebGraph (WG) or Social Network (SN).

B. Environment

We use a 2-socket machine with 768 GB main memory.
Each socket has an Intel® Xeon® Gold 6130 with 16 cores,
32KB L1 cache, 1MB L2 cache, and 22MB L3 shared cache.
The machine uses CentOS 7 and does not use hyper-threading.

To have a correct evaluation of RAs, it is necessary to reduce
the execution overheads of the processing framework because
those overheads could swallow up the improvements provided
by RAs. A study [50] shows that native hand-optimized imple-
mentations of graph analytics are faster than graph processing
frameworks by a large performance gap. We used an optimized
implementation of SpMV using pthread, libnuma, and
papi [51] libraries. It uses the interleaved NUMA memory
policy and applies work-stealing [52] for parallel processing
of graph partitions created by edge-balanced partitioning [49].
The master-worker model is used for managing parallel threads
and futex syscall for thread synchronization. The compiler
is gcc-9.2 with -O3 flag. We use 8 Bytes vertex data.

Compared to other graph processing frameworks such as
GraphGrind [49] (commit 5099761), GraphIt [53] (com-
mit c4781d8, OpenMP), and Galois [54](V5, commit
6ce5f0d), for SpMV PageRank our implementation is faster
for all datasets and, on average, it is faster by 1.2× - 2.1×.

IV. RELABELING ALGORITHMS & LOCALITY TYPES

This section briefly explains the RAs studied in this pa-
per and then introduces locality types. Table II shows the
preprocessing time (in Seconds) and memory footprint (in
GigaBytes) of the RAs.

A. SlashBurn

SlashBurn (SB) [10] considers the hubs as the main
connector between vertices and exploits this feature to detect
communities of vertices by removing hubs and finding the
connected components (communities). This process continues
in the next iteration for the giant connected component (GCC)
- the community with the largest number of edges. SB assigns
consecutive IDs to hubs of the main graph and the giant
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communities starting from 0 (based on their degree) and
vertices in a community also receive contiguous IDs.

We selected SB as it targets specifically real-world graphs;
moreover, it is a representative of degree-ordering RAs. The
original implementation of SlashBurn is in MATLAB® and
we implemented a parallel version of SB in the C language
that uses “basic hub-ordering” and k = 0.02|V |.

B. Rabbit-Order

Rabbit-Order (RO) [11] develops communities using
neighbours of vertices. By starting from the vertices with the
lowest degree, it searches for the neighbour with maximum
“gain” that can be reached through merging. The gain function
is defined as: ∆Qu,v = 2( wuv

2|V | −
degudegv
(2|V |)2 ), where wuv is

the weight of edge between u and v and degu is the degree
of u. The vertex and its max-gain neighbour are temporarily
merged for the purposes of reordering and the weight of the
new vertex is calculated as 2wuv +wuu +wvv . After merging
two vertices, the weight of their common edges are also added
up. The initial weights of a vertex and an edge are 0 and 1,
respectively.

The merging process continues while there is a neighbour
u of v with ∆Qu,v > 0, otherwise the vertex v is added to the
top level set which contains the root of communities. Finally,
a parallel Depth First Search (DFS) is performed starting from
members of the top level set to assign new IDs.

We selected RO as it is the fastest community detection RA.
We used commit f67a79e of Rabbit-Order. RO produces
different permutations in different executions and we observed
results vary up to ±5 %. One output of RO has been used for
all experiments in this paper. RO did not complete its execution
for the ClWb9 dataset because of an “out of memory” error.

C. GOrder

GOrder (GO) [2] prioritizes neighbours of vertices by
defining a “score” function between two vertices: S(u, v) =
Ss(u, v)+Sn(u, v). The sibling score (Ss(u, v)) is the number
of common in-neighbours between u and v, and the neighbour-
hood score(Sn(u, v)) is the edges between u and v. GO starts
from the vertex with the maximum degree and uses a sliding
window to find the vertex with maximum score (between
neighbours of recently assigned IDs) to assign the next ID.

We selected GO because of its special algorithm that con-
centrates on increasing temporal reuse instead of identifying
communities. We used commit 7ccdfe9 of GOrder with its
default window size (5) that is a single-threaded implementa-
tion for graphs with |E| < 231.

D. Locality Types

Considering random memory accesses in Line 4 of Algo-
rithm 1, the following patterns of reuse of vertex data are
identified. Each memory access is performed by cache queries
and a TLB lookup in VIPT (Virtually Indexed, Physically
Tagged) caches. We skip explanation of TLB index reuse for
each locality type as it is similar to cache line reuse.

• Type I: The consecutive neighbours of vertex v are close so
that accesses to the neighbours benefit from spatial reuse.
This means that proximity of IDs of consecutive neighbours
results in placing their data on the same cache line that
provides reuse in accessing data of neighbours.

• Type II: Subsequently processed vertices v and v+ δ have
common neighbours whose data is temporally reused. If
vertex u is a neighbour of v and v + δ, then proximity of
IDs allows cache to reuse the data of u in processing v+ δ
after using it for processing v.

• Type III: Subsequently processed vertices v and v + δ
have distinct neighbours, but the IDs of the neighbours are
close together and causes spatio-temporal reuse. If u is a
neighbour of v, and u + θ is a neighbour of v + δ, and θ
is small enough that data of u and u + θ are on the same
cache line, then proximity of v and v + δ results in reuse
of this cache line.

• Types IV and V: These types happen for reusing a cache
line that has been loaded by another thread into a shared
cache: a cache line contains data of vertices u and u + θ
and is (re)used in semi-concurrent processing of distinct
vertices by different threads. It is type IV, if θ = 0 (similar
to type II); otherwise, it is type V (similar to type III).
Types IV and V are not directly targeted by RAs as they

mainly depend on (1) vertex partitioning (parallelization) and
scheduling of the runtime environment, and (2) availability of
the shared caches in the processor architecture. Types I, II and
III are determined by the graph and are controlled by RAs.

GO aims for improving type II and III by selecting the
vertex with maximum gain based on current contents of cache.
RO targets type I and tries to improve clustering based on
neighbourhood of vertices that also results in type III. SB aims
to improve locality types I and III by identifying clusters, and
types II and III by assigning consecutive IDs to hubs.

V. METRICS AND TOOLS

In order to measure spatial locality (type I), we introduce
N2N AID degree distribution in Section V-A. Section V-B
introduces cache miss rate degree distribution that measures
temporal and spatio-temporal locality (types II and III).

A. Neighbour to Neighbour Average ID Distance

Community detection algorithms such as RO try to form
clusters based on the neighbourhood of vertices. By assigning
consecutive IDs to vertices in the same community, they aim
to increase reuse of neighbours’ data. To investigate how RAs
succeed in bringing neighbours close to each other (spatial
locality, type I), we calculate the distance between neighbours.

Using Nv,i to show the ID of the i-th neighbour of vertex
v (with sorted neighbours list in ascending order), Neighbour
to Neighbour Average ID Distance (AID) is defined as:

AIDv =

i=|Nv|∑
i=2

|Nv,i −Nv,i−1|

|Nv|
(1)
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When a RA assigns close IDs to neighbours of a vertex, the
difference between IDs of consecutive neighbours is reduced
and AID is reduced. In this way, lower AID values, generally,
relate to better spatial locality. For a SpMV in the pull
direction, AID considers only the in-neighbours of a vertex.

We study the effects of RO on spatial locality of different
vertex classes, using AID degree distribution in Section VI-C
(Figure 3). AID degree distribution is computed in O(|E|)
time and O(max− degree) space complexities.

It is useful to compare N2N AID to “average gap pro-
file” [23] that calculates average of the differences between the
IDs of two endpoints of each edge to provide a summary of
the spatial locality of the graph. The neighbours of a vertex
do not need to be close to the main vertex as they should
be only close to each other to maximize spatial locality.

It is important to note that AID measures clustering efficacy
of a RA and is independent of the architecture. In this way,
AID is not a deterministic spatial locality metric. As an
example, assume a vertex has neighbours with IDs 1600, 3200,
and 6400. If a RA changes the IDs of neighbours to 400,
800, and 1600; AID is reduced but the spatial locality is not
changed (as the neighbours are still on different cache lines).
Consequently, changes in AID are generally sufficient to affect
cache or TLB miss rates.

B. Cache Miss Rate Degree Distribution

To collect detailed information about RAs, we collect cache
miss rate based on degree of vertices that shows how RAs
affect locality types II and III of different vertex classes. We
use simulation for this purpose; however, detailed simula-
tion of processor and memory hierarchy (in simulators like
Gem5 [55]) is time-consuming for large graphs.

Since graph analytics are memory intensive (in SpMV, there
is just an add computation in Algorithm 1, Line 4), we ignore
simulating execution of instructions except time-consuming
memory instructions (load and store instructions) to make the
simulation process efficient and fast.

We designed a trace-based simulator based on the cache
simulator of SimpleScalar [56] and equipped it with an ac-
curate implementation of the dueling BRRIP and SRRIP [57]
cache replacement policies. We use this implementation for
level 3 cache shared between the cores of each NUMA node
and for the same configuration (number of sets and ways of
associativity) as the real CPU. We instrumented Algorithm 1
at source code level to call the simulator for every load/store.

We performed the parallel simulation in two phases:
(1) logging memory accesses during graph processing by each
of the parallel threads, and (2) dividing execution duration
between threads where for each interval a thread simulates all
logged accesses by parallel threads in a round robin way.

Figure 1 shows the degree distribution of cache miss rate
for RAs. We will interpret these results in Section VI.

For datasets used in this study the average simulation time
is 151 seconds. Compared to the real machine, the total cache
misses of the simulation has an average 15% error, and the
average relative error (for comparing misses between two

RAs) is 1.4%. This means that differences greater than 1.4%
between miss rates of relabeled versions of a graph in Figure 1
are valid.

VI. LOCALITY ANALYSIS OF RAS

A. Locality Analysis of SlashBurn

SB has been designed for power-law graphs: “We propose to
envision graphs as a collection of hubs connecting spokes, with
super-hubs connecting the hubs, and so on, recursively” [10].
The main idea is to iteratively remove hubs of power-law
graphs; however, the practicality of this method depends on
whether power-law graphs are destroyed recursively.

To assess this theory we depict the degree distribution of
GCC for different iterations of SB in Figure 2. Over different
iterations of SB, the degree distribution of the GCC does
not maintain the power-law property.

After a few iterations, the remaining network shows an
almost-uniform degree distribution with low degrees. Further
iterations of the SB separate these LDV from their neigh-
bours in what are perceived as different communities. As a
result, neighbours are assigned widely distinct IDs that reduces
locality types I and III.

SB is partly similar to degree-ordering as a number of
HDV receive initial consecutive IDs that increases temporal
reuse (types II and III) in accessing data of out-hubs.

SB improves locality types IV and V (Section VI-F).

B. Locality Analysis of GOrder

GO tries to optimize locality by maximizing reuse of the
current content of the cache (types II and III). It uses a
sliding window and searches for a neighbour with the greatest
score (Section IV-C). For a HDV in the sliding window the
sibling score is dominant and the vertex with more common
in-neighbours will have more chance to be selected. For a LDV
in the sliding window the neighbourhood score is dominant.

GO considers common neighbours with only a limited
number of already-placed vertices (a window size of the past
5 vertices). There are numerous LDV in power-law graphs
and many of them appear equally “close” to the 5 last
labeled vertices. As such, GOrder cannot properly distinguish
which LDV to select. This is reflected in the cache miss rate
(Figure 1) where GOrder decreases cache miss rate well on
HDV but cannot perform well for LDV.

To further investigate GOrder’s strategy towards HDV, we
use cache simulation to count the number of misses occur
in accessing data of HDV. Table III shows that GO and
SB have the lowest reloads of HDV. For Twitter MPI
and Friendster SB has lower reloads of vertices with
degree > 2000; but, for vertices with degree > 20, GO has
the lower reloads. As such, GOrder increases the number
of reloads of HDV to provide space in cache for LDV
(to reduce its reloads). The latter are exponentially more
frequent in power-law graphs.

As we explained in Section VI-A, degree-ordering in SB
keeps data of out-hubs in cache; but, the score function of
GO selects vertices with more temporal reuse based on the

http://www.simplescalar.com/
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Fig. 1: [Simulation] Cache miss rate degree distribution
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Fig. 2: [Real execution] Degree distribution of initial graph and GCC after SB iterations

TABLE III: [Simulation] Total number of misses (in millions)
for accessing data of vertices with degree > “Min. Degree′′

Dataset Min. Degree Initial SB GO RO
WebB 2,000 10 21 2 10
TwtrMpi 2,000 8 0.4 4 11
TwtrMpi 20 345 260 230 377
Frndstr 2,000 2 0.04 1 3
Frndstr 20 1,177 1,110 818 1,060
SK 100 8 26 7 11

current contents of the cache and prevents filling cache with
HDV. In other words, GO allocates cache space to vertices
with lower degree but with more temporal reuse in short
durations of processing and in this way, GOrder reduces the
presence of HDV in the cache to increase the total reuse.
As a consequence, GO fills the cache with vertices of different
degrees (but with more temporal reuse) rather than dedicating
the cache capacity to vertices with the highest degree.

C. Locality Analysis of Rabbit-Order

RO builds communities bottom-up and starts from low
degree vertices and merges neighbouring vertices while trying

to maximize the gain function (SectionIV-B). This results in
a set of trees that reflect the communities and are used in the
second phase, to assign IDs by DFS traversal of each tree.

We use degree distribution of AID (Section V-A) to assess
changes made by RO in spatial locality. As Figures 1 and 3
show, Rabbit-Order reduces AID of LDV and improves
their spatial locality by using DFS in the second phase
that assigns spatially close IDs between neighbouring LDV
in clusters. However, as degree of vertices is increased, DFS
cannot assign consecutive IDs to the neighbours (because each
neighbour has itself a number of neighbours). So, AID and
cache miss rate of Rabbit-Order are increased for HDV.

D. Observation on Hubs

Figure 1 shows that all RAs incur higher miss rates for
hub vertices. Processing an in-hub requires accessing data of
several in-neighbours, and only a fraction of that data exist in
cache. For other ones, memory accesses are required. While
RAs change the order of edges of hubs, they cannot change
the topology of graph. So, locality of hubs is not improved
by RAs as much as other vertices.
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Fig. 3: [Calculation] AID degree distribution

Locality of hubs is important as they dedicate a large
fraction of edges, i.e., a large fraction of traversal time to
themselves and this observation demonstrates that hubs of
real-world graphs suffer from a structural problem in
relation to locality that cannot be solved by RAs.

Moreover, the data fetched from memory for processing an
in-hub may be flushed before the end of processing that in-
hub, as the data of subsequent neighbours of that in-hub (that
again are missed in cache), should be read from memory and
be placed in cache. In this way, reuse of cache contents is
reduced as a side effect of processing in-hubs.

E. Real Execution Performance Metrics

Table IV shows the real execution of SpMV. The number
of misses and idle time are averaged between threads.

Last level (L3) cache misses shows the number of memory
accesses that are not satisfied by caches and sent to main
memory. The number of L3 misses is the main locality
metric. Table IV shows that SB usually destroys locality
and increases the execution time. GO reduces L3 misses and
execution time of social networks. RO improves locality of
web graphs and reduces their performance.

DTLB misses specify misses that occur in looking up
translations of virtual addresses to physical addresses. While
a DTLB miss results in (possibly multiple) memory accesses,
DTLB misses are not usually a bottleneck as the total size of
huge memory pages that are cached by TLB is much greater
than the aggregate CPU cache capacity. DTLB misses show
locality of RA at larger granularity, i.e., at longer reuse
distances than L3 misses.

RO interleaves HDV between LDV during the ID as-
signment phase. By applying DFS on independent clusters
whose data are placed in a few memory pages, Rabbit-Order
minimizes intra-cluster edges that reduces DTLB misses.

Idle time shows the average percentage of execution time
that each thread is idle. Comparison between RO and the base-
line for UU in Table IV shows that RO reduces L3 misses, but
the execution time is not better than the baseline. Increased idle
time is one of the reasons and shows that improving locality
does not necessarily translate to improved performance.

Since RAs do not evenly change the locality of consecutive
vertices (as partitions that are assigned to or stolen by threads),
as Table IV shows, improving locality of a graph dataset
by a RA may increase the idle time.

F. How Much of Cache Capacity Is Effectively Used?

We introduce the term Effective Cache Size (ECS) as “the
percentage of cache capacity dedicated to caching randomly
accessed data”. In SpMV (Algorithm 1), this measures the
proportion of cache used to cache Di. It is important as cache
lines of topology data are sequentially accessed and have a
limited reuse. So, there is no merit in keeping topology data
in cache; but, randomly accessed vertex data are reused and
dedicating more cache space is beneficial to performance.

We use functional (timing-less) simulation to estimate ECS.
We periodically scan the cache contents during execution to
identify cache lines containing old data of vertices. Table V
shows the results: RAs do not utilize all capacity of the
cache to satisfy random memory accesses.

Moreover, SB usually has the greatest ECS while it makes
the most cache misses (Figure 1 and Table IV). In other words,
by reducing locality, the effective cache size is increased.
To explain this, we need to review the arrangement of vertices
in the SB algorithm. By separating LDV from their parents in
the last iterations of SB, the locality types I and III of LDV
are reduced. This means more memory requests are performed
and cache lines with lower reuse are evicted faster (as a greater
number of new cache lines are fetched from the main memory
and should be placed somewhere in the cache). Therefore,
cache lines of topology data are removed faster from cache
and number of cache lines of vertex data is increased.

To have a better illustration, we compare this status to when
all random memory accesses are clustered on a small number
of vertex data because of better locality. So, only a fraction
of cache capacity is dedicated to those frequently accessed
vertices and ECS is reduced. Comparison of L3 misses in
Table IV and ECS in Table V also shows that the RA with
the best locality for a dataset usually has the lowest ECS.

This observation has an important repercussion for hardware
design: the full cache capacity remains unused in the current
state of the art. So, improving locality will mean caches
are even more over-sized. Moreover, we need algorithms
capable of deploying all capacity of the cache.

Increasing ECS in SB results in filling cache with a great
number of vertex data and locality types IV and V are
improved in processing numerous neighbours of hubs. So,
as Figure 1 shows, the miss rate of hubs is reduced by
SlashBurn.



TABLE IV: [Real execution] SpMV execution results (Bl: Baseline without relabeling)
Dataset Time (ms) Idle (%) L3 Misses (M) DTLB Misses (K)

Bl SB GO RO Bl SB GO RO Bl SB GO RO Bl SB GO RO
WebB 90 145 89 79 1.5 2.1 2.2 2.3 4.3 6.8 4.3 3.7 0.6 1.7 1.8 1.6
TwtrMpi 354 339 299 366 1.8 2 1.1 1.7 15.7 14.2 12.6 16.3 4.7 2.3 3.1 3.1
Frndstr 771 761 578 667 1.2 1.5 1.4 1.2 40.8 39.2 29.1 34.9 9.3 9.4 7.1 7.6
SK 117 168 109 109 8.2 1.5 1.6 4.1 5.7 8.8 5.5 5.3 0.8 1.4 0.5 0.6
WbCc 438 414 311 297 1.9 2.3 2.3 3.1 20.5 19.3 13.5 12.6 8.6 6.8 6.9 4.5
UKDls 194 317 180 1.9 1.9 2.5 10.1 16.5 9.3 1.8 4.4 1.4
UU 282 486 285 1.9 1.9 6 14.6 24.9 13.8 2.8 7.8 2.4
UKDmn 297 459 281 1.4 2.1 2.7 15.7 23.5 14.7 4.4 5.6 2.7
ClWb9 2,221 2,811 1.3 1.4 100.9 139.3 39M 181

TABLE V: [Simulation] Average effective cache size (%)
Dataset Initial SB GO RO
WebB 27.4 50.9 26.2 20.4
TwtrMpi 68.3 65.5 63.4 68.9
Frndstr 77.5 76.9 75.2 76.7
SK 37.3 55.2 37.3 42.9
WbCc 64.1 64.9 57.5 58.9
UKDls 22.0 48.1 20.6
UU 29.7 52.4 30.6
UKDmn 18.2 41.5 18.3
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Fig. 4: [Calculation] Asymmetricity degree distribution

VII. LOCALITY ANALYSIS OF DATASETS

This section investigates the structure of different types of
real-world graph datasets and their effects on RAs.

A. Web Graphs vs. Social Networks

Table IV shows that the RA that performs well for social
networks is GO and for web graphs, it is RO. Section VI-B
explains that GO improves locality of HDV and Section VI-C
demonstrates how RO improves locality of LDV. So, HDV of
social networks and LDV of web graphs are the main sources
of improving locality by GO and RO, respectively.

To explain this, we compare the connection between HDV
in social networks and web graphs by defining the Asym-
metricity of a vertex as the fraction of in-neighbours that are
not out-neighbours:

Asymmetricity(v) =
|{(u, v) ∈ E|(v, u) /∈ E}|

|{(u, v) ∈ E}|

Figure 4 compares the degree distribution of asymmetricity
of TwtrMpi (as a social network) to UK-Union (as a web

graph). It shows that TwtrMpi has highly symmetric vertices
with high in-degrees. In other words, in-hubs are almost
symmetric in social networks (in-hubs are out-hubs), while
web graphs do not have symmetric in-hubs.

For further investigation, we analyze the connection be-
tween vertices by defining degree classes: ”1-10”, ”10-100”,
”100-1K”, ... . Figure 5 represents the degree range decompo-
sition as the correlation between the degrees of neighbouring
vertices: all edges to vertices in a degree class are binned based
on the degree class of their source vertex. E.g., vertices with
in-degree between 10-100 in TwtrMpi receive 29% of their
incoming edges from vertices with out-degree 100K-1M.

For vertices with degree greater than 1K in TwtrMpi,
HDV form more than half of the neighbours, while in
SK-Domain LDV are dominant in forming neighbours of
HDV. This shows that HDV have close connection to each
other in social networks. On the other hand, LDV are the
main constituents of all degree classes of the web graphs.

For this tight connection of HDV in social networks, RO
cannot form independent clusters (with relatively small num-
ber of intra-cluster edges) and therefore RO cannot improve
locality of the HDV. Table III also shows that RO has the most
reloads, but GO manages hubs based on their temporal reuse
(Section IV-C). In this way, GOrder optimizes reuse of a
large number of fully connected HDV of social networks
that cannot be kept simultaneously in the cache by giving
priority to temporal reuse of vertices with lower degree.

On the other hand, web graphs do not have a tight con-
nection between HDV and the important factor for locality is
spatial locality between low-degree neighbours. As a result,
Rabbit-Order efficiently groups LDV to reduce AID and
improves their locality (Figures 1 and 3).

B. Push Locality vs. Pull Locality

Section II-F explained push and pull traversal directions. In
this section we explain how different datasets make benefit
from a special traversal direction.

Push and pull traversals differ in two aspects: (1) using
CSC in pull and CSR in push, and (2) reading data of
vertices in pull and writing it in push. So, the comparison
of push and pull traversals should be performed in two steps:
(1) investigating the impact of CSC and CSR formats of the
graph by considering the same operation (e.g. read) for both
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Fig. 5: [Calculation] Degree range decomposition of neighbours of vertices (in percent)

TABLE VI: [Real execution] CSC vs. CSR read traversals
Dataset L3 Misses (M) Traversal Time (ms)

CSC CSR CSC CSR
WebB 4.3 3.8 90 81
TwtrMpi 15,7 21.7 354 439
SK 5.7 4.6 117 88
UKDls 10.1 9.3 194 177
ClWb9 100.9 96.5 2,221 2,129

formats (instead of read in CSC and write in CSR), and
(2) identifying how read and write instructions affect the CSC
and CSR traversals.

The second step depends on the analytic algorithm, so, we
concentrate on the the first step to understand the impacts
of different real-world graphs on locality of push and pull
traversals. Table VI compares CSC and CSR traversals for
the read operation, i.e., each vertex makes a sum of data of
its in-neighbours (in CSC traversal) and its out-neighbours (in
CSR traversal). It shows that there is a fundamental difference:
web graphs have faster CSR traversal, but CSC traversal
is faster for social networks.

To explain the differences in CSR and CSC locality, we
study the structure of power-law graphs. The effect of hubs
becomes more important in CSR and CSC traversals by noting
two points discussed in Section VII-A: (1) real-world graphs
may have both in-hubs and out-hubs or only one of them,
and (2) in-hubs are not always out-hubs. Moreover, in a pull
traversal using CSC format, out-hubs have a constructive
effect on locality as their data is frequently accessed and is
reused in processing several vertices; but, in a push traversal
using CSR in-hubs are locality improving.

In order to explain locality of push and pull traversals, we
consider the number of edges that are processed by keeping H
hubs with maximum degrees in the cache. This shows what
fraction of total edges (as an indicator of total processing)
is covered (completed) by these H hubs. Figure 6 illustrates
the percentage of edges covered by hubs while increasing the
number of hubs for a social network (Twitter MPI) and a
web graph (SK-Domain).

Figure 6 shows that pull traversal of Twitter MPI can
process 44% of edges by keeping 100K out-hubs in the cache,
but push traversal can process about 23%. For SK-Domain
it is vice versa, and pull traversal can process only 4% of the

edges, while push traversal can process 64% of edges. We
found the same trend across all graphs of the same types.

This shows that web graphs benefit from push locality
as they have more powerful in-hubs than out-hubs, while
social networks benefit from pull locality because of their
more powerful out-hubs.

VIII. OPTIMIZING LOCALITY AND RAS

A. Optimizing Locality and Memory Accesses

Section VI-D showed that RAs are incapable of improving
locality of hub vertices. To counter this, iHTL [58] presents a
SpMV traversal to optimize locality of in-hubs in real-world
graphs. iHTL creates dense flipped blocks (sub-graphs) that
contain edges to in-hubs and processes them in push direction,
while processing the sparse block in the pull direction.

In contrast to RAs that are not able to effectively utilize
cache (Section VI-F), iHTL specifies the number of in-hubs
by considering the cache size. In this way, cache capacity
utilization is optimized in processing flipped blocks.

Section II-E showed two general methods for improving
locality of random accesses: (1) changing the order of vertices,
and (2) rearrangement of edges. The former is used by RAs
and the latter is deployed by iHTL by creating a number of
sub-graphs to exploit locality in processing in-hub vertices.

Thrifty Label Propagation [59] presents a structure-aware
Connected Components by reducing memory accesses in pro-
cessing hubs of power-law graphs.

B. Improving RAs

1) SlashBurn: In Section VI-A we explained that the GCC
of SB does not have a power-law degree distribution after
some initial iterations and contains a network of LDV. So, the
next iterations destroy the neighbourhood of LDV. To counter
this, we propose a variation on SB (called SlashBurn++),
that continues the iterations while GCC-max-degree ≥

√
|V |.

SlashBurn++ reduces preprocessing time, traversal time,
and L3 misses (Table VII).

2) Rabbit-Order: Degree distribution of cache miss rate
(Figures 1) can be used to identify an efficacy degree range
(EDR) that for vertices in this range, the RA improves locality.
We can skip relabeling vertices that are not in EDR to
reduce the preprocessing time and memory space: during
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Fig. 6: [Calculation] Comparison of percentage of edges covered by in-hubs in CSR traversal vs. out-hubs in CSC traversal

TABLE VII: [Real execution] Effect of stopping SlashBurn
after initial iterations

Dataset Preprocessing (s) Traversal (ms) L3 Misses (M)

SB SB++ SB SB++ SB SB++

TwtrMpi 46 21 339 328 14.2 13.6
Frndstr 75 43 761 700 39.2 36.0
WbCc 81 39 414 334 19.3 14.6

relabeling we pass only edges of those vertices to the RA
that their degree is within the EDR. For other vertices, we
let the labels be determined in the same manner as zero
degree vertices. By applying this technique to RO and for
two datasets, we experienced reduction in preprocessing time
without affecting the traversal time. For Frndstr the pre-
processing time reduced from 139 to 103 seconds, and for
TwtrMpi from 66 to 12 seconds.

C. Further Suggestions as Future Work

Section VI-B showed that GO improves locality of HDV,
while RO improves locality of LDV (Section VI-C). Therefore
a new RA can merge Rabbit-Order and GOrder tech-
niques to improve locality of both of LDV and HDV. Such
an RA may start from LDV like RO to build initial clusters
and then switch to a method like GO to relabel HDV.

We observed that GO cannot improve locality of LDV
because of its fixed size of sliding window. It can be improved
by dynamically changing size of sliding window based on
the contents of the window. Moreover, the vertex selection
policy of GOrder can be improved, for example by selecting
the vertex with the highest percentage of neighbours that can
be processed by traversing prior vertices in the sliding window.

In Section VI-A, we saw ECS is affected by RAs. However,
RAs are cache-oblivious algorithms [60], [61] and do not take
the cache size into account. RAs can be improved by con-
sidering caching parameters of the execution machine(s):

• SB can specify the number of hubs and therefore the
number of its iterations based on the cache size,

• GO can use cache size to identify its window size, and
• RO also can use cache size as an indicator of the maximum

number of vertices in a community which prevents increas-
ing size of communities indefinitely (Section VII-A).

IX. RELATED WORK

A. Locality Optimizing Algorithms

Space filling curves improve locality without relabeling the
graph. These techniques have first been investigated for dense
linear algebra [62]. More recently they have been applied to
graph processing [63], [64]. They are most easily applied in a
coordinate list representation of the graph.

In [16], graph relabeling is used to provide better locality
for neighbour vertices and therefore to provide better graph
compression.

B. Evaluation of RAs

The impacts of RAs on different graph analytics have been
studied in [20]–[23]; however, these studies do not reveal
details of RAs and how they affect locality of graphs. This
paper is the first one that investigates the functionality of RAs
based on different vertex classes.

X. CONCLUSION

This paper introduces a number of techniques to efficiently
analyze graph reordering algorithms (RA) and their effects on
real-world graphs. We classified locality types to enrich the
terminology required for the discussion and we presented an
accurate graph-specific simulation technique that allowed us
to investigate locality conditional on the degree of vertices. We
presented N2N AID as a spatial locality metric.

Using these techniques and metrics we studied three state-
of-the-art locality optimizing RAs: SlashBurn, GOrder, and
Rabbit-Order to identify how they affect locality of different
vertices. Moreover, we presented a structural analysis of
real-world graphs that explains the contrasting behaviours of
datasets in relation to RAs. We identified a tight network
of high-degree vertices in social networks that suffers from
temporal locality and we discussed the functionality of GOrder
that enhances temporal locality of these datasets. Analysis of
web graphs showed that their spatial locality is improved
by clustering low-degree vertices in Rabbit-Order. Effective
cache size introduced as a metric of cache capacity utilization
and we see it is reduced as locality is improved by RAs.

We also studied differences in locality of push and pull
traversals as consequences of the structure of datasets and
showed that web graphs benefit from push locality but social
networks benefit from pull locality. This reveals the necessity



of considering the structure of datasets in selecting a suitable
direction for processing and also in interpreting results.

Finally, we presented some immediate improvements to
RAs based on our study and also expressed further suggestions
that need more fundamental research.

ONLINE WEB PAGE

Further discussions relating to this paper are available
online on https://blogs.qub.ac.uk/GraphProcessing/
Locality-Analysis-of-Graph-Reordering-Algorithms/.
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