
How Do Graph Relabeling Algorithms Improve
Memory Locality?

Mohsen Koohi Esfahani
0000-0002-7465-8003

Peter Kilpatrick
0000-0003-0818-8979

Queen’s University Belfast, UK
{mkoohiesfahani01, p.kilpatrick, h.vandierendonck}@qub.ac.uk

https://blogs.qub.ac.uk/GraphProcessing/LaganLighter

Hans Vandierendonck
0000-0001-5868-9259

Abstract—Relabeling algorithms aim to improve the poor
memory locality of graph processing by changing the order of
vertices. This paper analyses the functionality of three state-of-
the-art relabeling algorithms: SlashBurn, GOrder, and Rabbit-
Order for real-world graphs.

Index Terms—Graph processing, Memory locality, High per-
formance computing, Graph traversal, Relabeling algorithm,
Data analysis, Graph reordering

I. METHODOLOGY

We investigate three relabeling algorithms: GOrder (GO)
[1] (commit 7ccdfe9), Rabbit-Order (RO) [2] (commit
f67a79e), and SlashBurn (SB) [3] (C implementation of
basic hub-ordering and 0.02|V |) for Sparse Matrix-Vector
(SpMV) multiplication graph traversal using CSC and CSR
graph representations [4], with |V |+1 index values of 8 bytes
per index value and |E| neighbour IDs, each requiring 4 bytes.
Experiments are performed on a 2-socket machine with 768
GB main memory and each socket has an Intel® Xeon® Gold
6130. Figure 1 and Table III use the last level cache simulator
of SimpleScalar [5] with dueling RRIP and SRRIP [6]. The
simulation has an average 10.6% error of total misses com-
pared to the real hardware. Table I shows the datasets and their
source: Konect (KN) [7]–[9], Network Repository (NR) [10]–
[14], or Laboratory of Web Algorithmics (LWA) [9], [14]–[17].

TABLE I: Datasets
Dataset Name Source |V ||V ||V | (M) |E||E||E| (B) Type
WebB WebBase-2001 LWA 118 1 Web Graph
Twtr Twitter MPI NR 41 1.5 Social Network
Frndstr Friendster NR 65 1.8 Social Network
SK SK-Domain LWA 50 2 Web Graph
WbCc Web-CC12 NR 89 2 Web Graph
UKDls UK-Delis LWA 110 4 Web Graph
UU UK-Union LWA 133 5.5 Web Graph
UKDmn UK-Domain KN 105 6.6 Web Graph
ClWb9 ClueWeb09 NR 1.7K 7.9 Web Graph

II. CACHE MISS RATE DEGREE DISTRIBUTION

The cache miss rate of a vertex is defined as the percentage
of accesses to its in-neighbours’ vertex data that are missed
by cache. Figure 1 compares the degree distribution of the last
level cache miss rate for a social network (Twtr) and a web
graph (UU). It shows that the locality of hubs as very high-
degree vertices is not improved by relabeling algorithms
as much as other vertices.

Fig. 1: Degree distribution of miss rate (in percent)

Fig. 2: Degree distribution of GCC after SB iterations

III. SLASHBURN

SB considers hubs of a graph as the main connector of nodes
and detects communities by removing hubs and finding the
connected components (communities). This process continues
in the next iteration for the giant connected component (GCC)
- the community with the largest number of edges. The
practicality of this method depends on whether power-law
graphs are made/destroyed recursively. Figure 2 investigates
this theory by showing the degree distribution of GCC for
different iterations of SlashBurn and shows that over different
iterations of SlashBurn, the degree distribution of the GCC
does not maintain the power-law property. Instead, after
a few iterations, the remaining network shows an almost-
uniform degree distribution with low degrees. Further itera-
tions of the SlashBurn algorithm separate these low-degree
vertices (LDV) [18] from their parents in what are perceived
as different communities. As a result, SB reduces the locality
of LDV, especially in web graphs (Figure 1). To counter this,
we propose a variation on SB (called SB++), that continues the
iterations while GCC-max-degree ≥

√
|V |. SB++ has smaller

preprocessing-time, and moreover it has better traversal time
and L3 misses than SlashBurn (Table II).

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
978-1-7281-8643-6/18/©2021 IEEE
https://doi.org/10.1109/ISPASS51385.2021.00023

https://orcid.org/0000-0002-7465-8003
https://orcid.org/0000-0003-0818-8979
https://blogs.qub.ac.uk/GraphProcessing/LaganLighter
https://orcid.org/0000-0001-5868-9259
https://github.com/datourat/Gorder
https://github.com/araij/rabbit_order
http://datalab.snu.ac.kr/~ukang/SlashBurn-1.0.zip
https://ark.intel.com/content/www/us/en/ark/products/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html
http://www.simplescalar.com/
http://law.di.unimi.it/webdata/webbase-2001/
http://networkrepository.com/soc-twitter-mpi-sws.php
http://networkrepository.com/soc-friendster.php
http://law.di.unimi.it/webdata/sk-2005/
http://networkrepository.com/web-cc12-hostgraph.php
http://law.di.unimi.it/webdata/uk-2007-02/
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
http://konect.cc/networks/dimacs10-uk-2007-05/
http://networkrepository.com/web-ClueWeb09.php
https://doi.org/10.1109/ISPASS51385.2021.00023

TABLE II: Stopping SB after initial iterations

Dataset Pre-processing Time (s) Traversal Time (ms) L3 Misses (K)
SB SB++ SB SB++ SB SB++

Twtr 46 21 339 328 14,218 13,607
Frndstr 75 43 761 700 39,200 36,020
WbCc 81 39 414 334 19,337 14,631

IV. GORDER

GO prioritizes neighbours of vertices by defining a “score”
function between two vertices that is sum of the sibling score
(the number of common in-neighbours) and the neighbourhood
score (the number of edges between them). GO starts from
the vertex with the highest degree and uses a sliding window
(of size 5) to find the vertex (between neighbours of recently
assigned IDs) with the maximum score to assign the next ID.

GO considers common neighbours with only a limited
number of already-placed vertices. There are numerous LDV
in power-law graphs, many of them appearing equally “close”
to the 5 last labeled vertices. This is reflected in Figure 1
where GO decreases cache miss rate well on high-degree
vertices (HDV) and can not improve locality of the LDV.
Table III compares the number of L3 misses for reading the
vertex data of HDV. GO and SB have the lowest reloads of
HDV. For Twtr and Frndstr, SB has lower reloads of ver-
tices with degree > 2000, but for vertices with degree > 20,
GO has the lower reloads. As such, GO increases the reload
of HDV for allocating cache space to vertices with lower
degree but with more temporal reuse for small durations
of processing. This reduces the total misses by reducing the
reload of LDV that are exponentially more frequent.

TABLE III: L3 misses (in millions)
Dataset Min. Degree Initial SB GO RO
WebB 2000 10 21 2 10
Twtr 2000 8 0.4 4 11
Twtr 20 345 260 230 377
Frndstr 2000 2 0.04 1 3
Frndstr 20 1,177 1,110 818 1,060
SK 100 8 26 7 11

V. RABBIT-ORDER

RO starts from the vertices with lowest degree and searches
for the neighbours where maximum “gain” can be obtained
by merging. This process continues while gain is positive:
otherwise, the community has been formed. Finally RO applies
Depth First Search (DFS) for assigning IDs to vertices of a
community. DFS tends to assign spatially close IDs between
neighbouring LDV. However, HDV have many neighbours that
are strongly dispersed through the tree.

Fig. 3: AID degree distribution

To investigate the functionality of RO, we use Average
ID Distance (AID) that is defined as the average differ-
ence between the ID of a vertex(v) and its neighbours(Nv):
AIDv = (

∑
u∈Nv

|v − u|)/|Nv|. The AID is meaningful

for assessing locality of clustering relabeling algorithms: if
neighbours become closer to each other, it is more likely to
have the vertex data of neighbours in cache while processing
other neighbours. Figure 3 shows the AID degree distribution
of a social network (Twtr) and a web graph (UU). It shows
that RO reduces the AID of LDV and provides better
locality for LDV (Figure 1). For HDV in social networks, RO
cannot detect distinct communities and AID is not reduced.

VI. PUSH VS. PULL LOCALITY

Push and pull traversals have been studied in [19]; however,
it is necessary to consider the CSC and CSR traversals in the
first step and then identify how read and write affects the
CSC/CSR traversal. Table IV shows there is a fundamental
difference between CSC and CSR traversals for different
graphs beyond the specific characteristics of graph analytics.

TABLE IV: CSR vs. CSC traversal
Dataset L3 Misses (K) Traversal Time (ms)

CSC CSR CSC CSR
WebB 4,345 3,843 90 81
Twtr 15,706 21,653 354 439
SK 5,743 4,619 117 88
UKDls 10,137 9,278 194 177
ClWb9 100,941 96,490 2,221 2,129

To explain the difference between CSR and CSC traversals,
we consider the number of edges that is covered by selecting
different numbers of the highest degree vertices of a graph.
Figure 4 shows that if 100K hubs can be kept in cache, the
pull traversal of Twtr can process 44% of edges without
reloading from memory, but the push traversal can process
about 23%. For SK it is vice versa, and pull traversal can
process only 4% of edges, while push traversal can process
more than 60%. This shows that web graphs benefit from
push locality because they have more powerful in-hubs
than out-hubs, while social networks can benefit from pull
locality because of their more powerful out-hubs.

Fig. 4: Cumulative edges of in-hubs and out-hubs

VII. CONCLUSION

We presented a number of techniques to explain how
relabeling algorithms affect locality of vertex classes. This
study facilitates enhancing relabeling algorithms by displaying

their shortcomings and requirements. We also explored differ-
ences in locality of push and pull traversals that show the
importance and necessity of considering the structure of
datasets in interpreting results of graph algorithms.

CODE AVAILABILITY

The additional data and code used for this paper are
available in https://blogs.qub.ac.uk/GraphProcessing/how-
do-graph-relabeling-algorithms-improve-memory-locality-
ispass21/.

ACKNOWLEDGEMENT

We are thankful to our ISPASS reviewers for their informa-
tive and constructive feedback. We thank Jordan McComb for
SkyLake cache simulation system as his Master project. We
also thank Prof. Paolo Boldi, Junya Arai, and Yongsub Lim
for giving guidance for WebGraph, Rabbit-Order, and Slash-
Burn, respectively. This work is partially supported by the
High Performance Computing center of QUB and the Kelvin
supercomputer (EPSRC grant EP/T022175/1) and by DiPET
(EPSRC grant EP/T022345/1). First author is supported by a
scholarship of Queen’s University Belfast and the Department
for the Economy, Northern Ireland. We especially thank Tony
McHale and John Conway for managing the HPDC cluster,
and Vaughan Purnell and James McGroarty for managing the
HPC center of QUB.

REFERENCES

[1] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup graph processing
by graph ordering,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16. NewYork,
NY, USA: ACM, 2016, pp. 1813–1828. [Online]. Available: http:
//doi.acm.org/10.1145/2882903.2915220

[2] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura,
“Rabbit order: Just-in-time parallel reordering for fast graph analysis,”
in 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), May 2016, pp. 22–31.

[3] Y. Lim, U. Kang, and C. Faloutsos, “Slashburn: Graph compression
and mining beyond caveman communities,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 12, pp. 3077–3089, Dec
2014.

[4] Y. Saad, “Sparskit: a basic tool kit for sparse matrix computations -
version 2,” 1994.

[5] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
SIGARCH Comput. Archit. News, vol. 25, no. 3, p. 13–25, Jun. 1997.
[Online]. Available: https://doi.org/10.1145/268806.268810

[6] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High
performance cache replacement using re-reference interval prediction
(rrip),” SIGARCH Comput. Archit. News, vol. 38, no. 3, p. 60–71, Jun.
2010. [Online]. Available: https://doi.org/10.1145/1816038.1815971

[7] J. Kunegis, “KONECT – The Koblenz Network Collection,” in Proc.
Int. Conf. on World Wide Web Companion, 2013, pp. 1343–1350.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2488173

[8] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and analysis of online social
networks,” in Proceedings of the 7th ACM SIGCOMM Conference
on Internet Measurement, ser. IMC ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 29–42. [Online].
Available: https://doi.org/10.1145/1298306.1298311

[9] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A scalable
fully distributed web crawler,” Software: Practice & Experience, vol. 34,
no. 8, pp. 711–726, 2004.

[10] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com

[11] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi, “Measuring
user influence in twitter: The million follower fallacy,” in ICWSM,
Washington DC, USA, May 2010.

[12] F. social network, “Friendster: The online gaming social network,”
https://archive.org/details/friendster-dataset-201107.

[13] C. L. Clarke, N. Craswell, and I. Soboroff, “Overview of the trec 2009
web track,” DTIC Document, Tech. Rep., 2009.

[14] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proceedings of the 13th International Conference on
World Wide Web, ser. WWW ’04. New York, NY, USA: ACM, 2004,
pp. 595–602. [Online]. Available: http://doi.acm.org/10.1145/988672.
988752

[15] P. Boldi, A. Marino, M. Santini, and S. Vigna, “BUbiNG: Massive
crawling for the masses,” in Proceedings of the Companion Publication
of the 23rd International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2014, pp. 227–228.

[16] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation:
A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th International Conference on World
Wide Web, ser. WWW ’11. New York, NY, USA: ACM, 2011, pp. 587–
596. [Online]. Available: http://doi.acm.org/10.1145/1963405.1963488

[17] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th International
Conference on World Wide Web, ser. WWW ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 591–600. [Online].
Available: https://doi.org/10.1145/1772690.1772751

[18] N. Alon, R. Yuster, and U. Zwick, “Finding and counting given length
cycles,” Algorithmica, vol. 17, pp. 354–364, 1997.

[19] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler,
“To push or to pull: On reducing communication and synchronization
in graph computations,” in Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 93–104. [Online]. Available: https://doi.org/10.
1145/3078597.3078616

https://blogs.qub.ac.uk/GraphProcessing/how-do-graph-relabeling-algorithms-improve-memory-locality-ispass21/
https://blogs.qub.ac.uk/GraphProcessing/how-do-graph-relabeling-algorithms-improve-memory-locality-ispass21/
https://blogs.qub.ac.uk/GraphProcessing/how-do-graph-relabeling-algorithms-improve-memory-locality-ispass21/
http://doi.acm.org/10.1145/2882903.2915220
http://doi.acm.org/10.1145/2882903.2915220
https://doi.org/10.1145/268806.268810
https://doi.org/10.1145/1816038.1815971
http://dl.acm.org/citation.cfm?id=2488173
https://doi.org/10.1145/1298306.1298311
http://networkrepository.com
http://doi.acm.org/10.1145/988672.988752
http://doi.acm.org/10.1145/988672.988752
http://doi.acm.org/10.1145/1963405.1963488
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1145/3078597.3078616

	Methodology
	Cache Miss Rate Degree Distribution
	SlashBurn
	GOrder
	Rabbit-Order
	Push vs. Pull Locality
	Conclusion
	References

