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Abstract—Various concurrent algorithms have been proposed
in the literature in recent years that mostly focus on the disjoint
set approach to the Connected Components (CC) algorithm.
However, these CC algorithms do not take the skewed structure
of real-world graphs into account and as a result they do not
benefit from common features of graph datasets to accelerate
processing.

We investigate the implications of the skewed degree distribu-
tion of real-world graphs on their connectivity and we use these
features to introduce Thrifty Label Propagation as a structure-
aware CC algorithm obtained by incorporating 4 fundamental
optimization techniques in the Label Propagation CC algorithm.

Our evaluation on 15 real-world graphs and 2 different
processor architectures shows that Thrifty accelerates the flow
of labels and processes only 1.4% of the edges of the graph.

In this way, Thrifty is up to 16× faster than state-of-the-art
CC algorithms such as Afforest, Jayanti-Tarjan, and Breadth-
First Search CC. In particular, Thrifty delivers 1.5 × −19.9×
speedup for graph datasets larger than one billion edges.

Index Terms—Connected components, Label propagation,
High performance computing, Graph Connectivity, Graph al-
gorithms, Graph traversal, Data analysis.

I. INTRODUCTION

Connected Components (CC) is a graph analytic algorithm
widely used in different fields of science, industry and technol-
ogy including biology [1], [2], [3], image processing [4], [5],
economy [6], and astronomy [7], and acts also as a preliminary
tool in several graph analytics like graph clustering [8], [9],
[10], locality optimizing graph relabeling (reordering) [11],
graph partitioning and processing [12], [13].

Algorithms for finding connected components in a graph
can be placed in one of three classes:

1) Flood Filling CC [14], [15], [16], [17] performs breadth-
first search (BFS) or depth-first search (DFS) to identify
all vertices that are reachable from a chosen starting point.
A BFS/DFS search is required for each component.

2) Label Propagation CC (LP-CC) [18] iteratively updates
the label of each vertex by calculating the minimum value
between labels of its neighbours. Label Propagation CC
can be specified in terms of generalized Sparse Matrix-
Vector (SpMV) multiplication.
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Fig. 1: Average speedup normalized to DO-LP

3) Disjoint Set CC [19], [20], [21], [22] uses the disjoint set
data structure to group connected vertices in the same set.
As sets are often represented as trees, these algorithms
have also been called “tree-hooking” algorithms [23].

Some studies have identified that Disjoint Set CC is more
efficient than Flood Filling and Label Propagation [22], [24].
This is especially true for graph datasets with high diame-
ters [25], such as road networks. Moreover, in the case of
graphs with skewed degree distribution, such as those found
in social networks and web graphs, Disjoint Set CC minimizes
the number of times each edge is processed. Jayanti and Tarjan
process each edge just once [21] while Afforest processes
each edge on average slightly more than once [22]. However,
Disjoint Set CC is not scalable and has not been effective in
distributed processing [26]. In contrast, the Label Propagation
CC follows a SpMV model that has been successfully scaled
to distributed systems [27], [28], [29].

In this paper, we present a new perspective on the CC algo-
rithm by investigating the implications imposed by real-world
graphs on the efficiency of the label propagation process of the
LP-CC algorithm. Many real-world graphs derived from social
networks, the internet, and the world-wide web show a heavy-
tailed skewed degree distribution. In other words, a very small
fraction of the vertices are connected to a disproportionately
large fraction of edges. This particular relationship between
vertices merits special attention.

We identify 4 main problems in LP-CC: (1) repeated wave-
fronts, (2) propagating labels to converged vertices, (3) incor-
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rect initial label assignment, and (4) weak bootstrapping label
propagation. Then, we introduce Thrifty Label Propagation
as our solution to remedy these problems using four optimiza-
tion techniques: (1) Unified Labels Array, (2) Zero Conver-
gence, (3) Zero Planting, and (4) Initial Push.

We evaluate the Thrifty algorithm against state-of-the-art
CC algorithms Afforest [22], Jayanti-Tarjan (JT) [21], BFS-
CC [30], and Shiloach-Vishkin (SV) [19]. Moreover, we eval-
uate Thrifty for 2 different processor architectures: Intel Sky-
LakeX and AMD Epyc with 32 and 128 cores, respectively.
Figure 1 compares the speedup of different CC algorithms
for different architectures. Our evaluation shows that Thrifty
is faster than Afforest, JT, BFS-CC, and SV by 1.4×, 7.3×,
14.7×, and 51.2×, respectively. In comparison to Direction
Optimizing Label Propagation, Thrifty shows 25.2× speedup.

This paper is structured as follows: Section II explains
key background materials. Section III explains the main in-
efficiencies in the Label Propagation algorithm in processing
real-world graphs with power-law degree distribution, and
Section IV introduces four optimization techniques to solve
these problems. Section V evaluates our new Thrifty algorithm
and Section VI discusses further related work. Future work
is discussed in Section VII.

II. BACKGROUND

A simple graph or undirected graph G = (V,E) has a set
of vertices V , and a set of edges E between these vertices.
Edges are unordered pairs of elements of V . Nv is the set
of neighbours of vertex v. We consider algorithms for static
graphs, which are immutable during the evaluation of the
algorithms.

We represent undirected graphs using a compressed sparse
(rows or columns) representation [31]. This is a compact
representation that is generally assumed in graph processing. A
drawback of this representation is that each edge is represented
twice: once pointing from a vertex to its neighbour, and
once pointing back from the neighbour to the vertex. This
representation simplifies information flow across edges in both
directions. Afforest also assumes this representation in support
of sampling edges incident to specific vertices [22]. Some
algorithms, like the Jayanti and Tarjan algorithm, operate
correctly on a coordinate representation, where each edge
appears precisely once [21].

A frontier F is a data structure that represents a set of active
vertices F.V and a set of active edges F.E that is induced
by the vertex set: F.E = {(v, u) ∈ E|v ∈ F.V ∧ u ∈ Nv}.
Frontiers may be implemented as worklists (listing specifically
the active vertices in F.V ), or as a bitmap or boolean array
(storing a boolean value for each vertex v ∈ V that indicates
if v ∈ F.V ). Graph processing systems dynamically switch
between these representations depending on the density of
the frontier, i.e., the number of vertices and edges it contains
compared to the size of the graph [32].

The principle of LP is that each vertex is initially assigned
a unique integer label. Each vertex subsequently compares its
label to the labels of its neighbours and updates its label to

Algorithm 1: Direction Optimizing LP CC
Input: G(V, E), new lbls[ ], old lbls[ ]

1 Frontier old fr(V ), new fr;
/* Initial label assignment */

2 par for v ∈ V
3 old lblsv = new lblsv = v;
4 old fr.set(v);
5 do
6 new fr.reset();

/* Identifying direction */
7 density = (|old fr.V |+ |old fr.E|)/|E|;
8 if density < threshold then

/* Push traversal */
9 par for v ∈ old fr

10 for u ∈ Nv do
11 if atomic min(&new lblsu, old lblsv)

then new fr.set(u) ;
12 else

/* Pull traversal */
13 par for v ∈ V
14 new label = old lblsv;
15 for u ∈ Nv do
16 if old lblsu < new label then
17 new label = old lblsu;
18 if new label < old lblsv then
19 new lblsv = new label;
20 new fr.set(v);

/* Synchronizing labels arrays */
21 par for v ∈ V
22 old lblsv = new lblsv;
23 swap(new fr, old fr);
24 while |old fr|;

be the smallest among them. This process is repeated for all
vertices in the graph during one iteration of the algorithm.
Subsequent iterations repeat this process until no further
changes are made to the labels. The initially assigned labels
can be chosen freely, as long as each vertex has a distinct
label.

A. Direction Optimizing Label Propagation

The direction optimizing graph traversal selects push or
pull traversal based on the number of vertices and edges that
should be processed [33], [34]. Direction Optimizing Label
Propagation (DO-LP) has been implemented in different graph
processing frameworks including [35], [25], [28], [36], [37],
[38], [39]. We present here a version of the algorithm that is
broadly considered as the state of the art Label Propagation
algorithm (Algorithm 1).

DO-LP maintains two arrays to store labels of vertices:
old lbls holds the labels derived during the previous iteration,
while new lbls holds the updated labels calculated in the
current iteration. DO-LP uses two frontiers to manage active
vertices in each iteration: (1) the new fr collects vertices
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Fig. 2: Label propagation in the Direction Optimizing (gray background indicates an active vertex).
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Fig. 3: Percentage of converged and active vertices in pull iterations of the DO-LP

whose labels have been changed in this iteration and should
propagate their new label in the next iteration, and (2) the
old fr contains active vertices in the current iteration, i.e.,
their label has been changed in the previous iteration.

New and old labels of each vertex are initialized by the
vertex ID (Lines 2-4), and then CC iterations are started by
identifying the traversal direction using the density of the
frontier (Lines 6-7). Values like 1

15 , 1
18 [34], and 5% [35],

[25] are often used as density threshold.

In a sparse iteration, a push traversal is performed: for each
vertex v in the frontier, all neighbours are checked. If the new
label of a neighbour is greater than the old label of v (Line
10), the neighbour’s new label is updated and the neighbour
is submitted to the new fr to be processed in the next
iteration. The atomic min() uses compare_and_swap()
to perform an atomic write of old lblsv to new lblsu, if
new lblsu is lower than old lblsv . The atomic min() returns
the result of comparison that states if new lblsu has been
modified by this function.

In a dense iteration, a pull traversal is executed (Lines 13-
20). The new label of a vertex is identified as the minimum
value between the old labels of the vertex and its neighbours
(Lines 16-17). While the pull iteration calculates a new frontier
new fr, it does not consult whether its neighbours are present
in old fr. This is correct as all labels are valid values and
improves performance by reducing memory accesses.

An iteration is finished by updating the old labels of vertices
to their new values (Lines 21-22). Iterations are continued as
long as the label of at least one vertex is modified (Line 24).

III. DRAWBACKS OF LABEL PROPAGATION IN
PROCESSING POWER-LAW GRAPHS

While DO-LP employs various important inventions in
high-performance graph processing, several inefficiencies re-
main. These inefficiencies are specifically important for power-
law graphs.

A. Repeated Wavefronts

Labels are propagated from one vertex to its neighbours.
As a consequence, DO-LP propagates a label over one hop
distance during one iteration, and two hops distance during
two iterations. This causes a wavefront of updates that ripples
through the graph and causes changes to the vertex labels. In
this way, after each iteration of the DO-LP, a new wavefront
is initiated and this new wavefront follows the previous
wavefront at a distance.

The DO-LP initiates a new wavefront only at the end of an
iteration, when updated labels are committed (Lines 21 and
22 in Algorithm 1). Moreover, wavefronts can propagate over
at most one hop during any iteration.

Figure 2 shows an example graph and its label propaga-
tion steps. Initially all vertices receive a label as their ID.
Following the next iterations, vertices update their labels by
comparing labels of their neighbours. Figure 2 shows that DO-
LP propagates a label only one hop per iteration. First, label
1 is propagated from vertex B to vertex C and then on to
the main part of the graph. This is subsequently repeated by
overwriting label 1 with 0. As such, it requires to perform as
many iterations as the diameter of the graph (4 iterations) to
propagate the lowest label of the component to all vertices of
the component. Thus, label propagation in DO-LP is a slow
and repetitive process.
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Fig. 4: Label propagation in the Thrifty

B. Preaching to the Converged

The DO-LP algorithm tries to minimize the amount of com-
putation by tracking which vertices had their label changed.
In this way, only changed labels are propagated. However, this
still causes redundant work. Figure 3 shows the percentage of
vertices that are active at the start of pull iterations, as well
as the percentage of vertices that have converged to their final
value. Converged vertices have reached their final values and
do not need to be processed further.

Figure 3 demonstrates that convergence is very slow in the
first iterations as well as in the final iterations. In between,
convergence occurs very quickly with 30–60% of the vertices
converging during one iteration. These are the most effective
iterations.

However, during these and the following iterations, there is
redundant activity: the number of active vertices is high as well
as the number of converged vertices. Hence, most of the active
vertices will try to propagate their label to a vertex that has
already converged. In other words, DO-LP performs excess
work by processing all edges of the graph in pull iterations
as it is not able to identify if vertices have converged.

C. Inefficient Initial Label Assignment

The propagation of labels is in part driven by the initial
label assignment. For instance, in Figure 2, a small label is
assigned to the vertex A which is on the fringe of the graph.
The label is propagated to the core of the graph over several
iterations. During the first iterations, however, other labels are
also propagated between vertices like E, D, and C. When A’s
label reaches C, the traversal inside the core has to be repeated
all over.

However, when labels are assigned differently, LP is more
efficient. Note the degree of freedom in choosing the initial
label assignment: the only constraint is that all vertices initially
have distinct labels. If vertex E is initially assigned the
smallest label (Figure 4), then the label is first propagated
in the core of the network, which then stabilises. The label is
subsequently propagated out to vertex E, causing fewer label
updates in total. This shows that the initial label assignment
affects performance and that structure-oblivious initial label
assignment prevents efficient propagation of the labels.

D. Eager Bootstrapping Label Propagation

DO-LP starts with propagating the label of each vertex to its
neighbours, as indicated by initializing new fr to contain all
vertices. This is necessary initially as we need to compare
the label of a vertex at least once to all its neighbours.

However, doing this right at the start is inefficient as very few
vertices converge to their final label in the very first iterations
(Figure 3).

The cause of this inefficiency can be found in the fact
that most vertices have a large label. However, in skewed-
degree graphs, most vertices also have neighbours with large
labels. As such, in the first iterations of the DO-LP, there
is little opportunity to reduce the magnitude of the label
significantly. Even worse, most updates will be overridden by
future wavefronts carrying smaller labels. As such, the initial
pull iterations of the DO-LP are work inefficient.

IV. THRIFTY LABEL PROPAGATION

We introduce 4 optimization techniques to address the inef-
ficiencies of DO-LP described above. These are implemented
in Algorithm 2.

A. Unified Labels Array

DO-LP incurs a slow label propagation, with a wavefront
progressing at most one hop per iteration (Section III-A).
We address this by employing a Unified Labels Array that
uses only one array for labels, as opposed to different arrays
for the old and new labels. In this way, updated labels can
be propagated already within the same iteration as they are
calculated, simply by reading the values from the same array
(or memory location) as they were written to.

Section V-C1 shows that the number of iterations is reduced
by up to 89% and on average by 39%, as a result of
accelerating label propagation by using one labels array.

By using one labels array, the label arrays’ synchronization
in Lines 21-22 of the Algorithm 1 is removed in Algorithm 2.
This reduces the execution time of sparse push iterations
significantly.

B. Zero Convergence

DO-LP is prone to processing many vertices that have
already converged on their final label (Section III-B). As such,
we desire to recognise when vertices have converged and, once
they have converged, we skip processing these vertices. But
how can we know if a vertex has converged? Hereto, we make
two observations.

Firstly, the LP algorithm performs the “minimum” arith-
metic operation on the labels of each pair of neighbouring
vertices. The arguments to the minimum operation are the
labels, which are integers. It is important to note that the LP
algorithm does not create new labels. It only copies over labels
from one vertex to another, in such a way that larger labels
are overwritten by smaller labels. As such, we know that the



Algorithm 2: Thrifty Label Propagation
Input: G(V, E), labels[ ]

1 Frontier old fr(V ), new fr;
/* Initial label assignment */

2 /* Zero Planting */
3 par for v ∈ V
4 labelsv = v + 1;
5 if v.degree > Max Degreesthread id then
6 Max Degreesthread id = v.degree;
7 Max Idsthread id = v;
8 max degree id = max(Max Degrees,Max Ids);
9 labelsmax degree id = 0;

10 /* Initial Push */
11 par for v ∈ Nmax degree id

12 labelsv = 0;
13 do
14 new fr.reset();

/* Identifying direction */
15 density = (|old fr.V |+ |old fr.E|)/|E|;
16 if density < new threshold then

/* Push traversal */
17 par for v ∈ old fr
18 for u ∈ Nv do
19 if atomic min(&labelsu, labelsv) then
20 new fr.set(u)
21 else

/* Pull traversal */
22 par for v ∈ V
23 /* Zero Convergence */
24 if labelsv == 0 then
25 continue;
26 new label = labelsv;
27 for u ∈ Nv do
28 if labelsu < new label then
29 new label = labelsu;
30 /* Zero Convergence */
31 if new label == 0 then
32 break;
33 if new label < labelsv then
34 labelsv = new label;
35 new fr.set(v);
36 swap(new fr, old fr);
37 while |old fr|;

smallest label that any vertex can ever obtain is the same as the
smallest label in the initial assignment of labels. In our case,
that is zero. As such, we can safely assume that any vertex
holding a zero label has converged – it cannot be updated
further.

Our second observation answers the question: Are there
many vertices that will converge to the zero label? The answer
is based on the high connectivity of vertices in real-world
skewed-degree graphs. Table I shows the percentage of vertices
of each dataset that are in the largest component. It shows

TABLE I: Percentage of vertices in the component containing
the vertex with the maximum degree

Dataset Vertices% Dataset Vertices% Dataset Vertices%
Pkc 100 WWiki 99.8 LJLnks 99.7
LJGrp 100 Twtr10 100 Twtr 99.8
Wbbs 97.9 TwtrMpi 100 Frndstr 100
SK 100 WbCc 98.9 UKDls 99.3
UU 99.3 UKDmn 99.2 ClWb9 94.5

that more than 94% of vertices of power-law graphs are
connected to each other. This corresponds to the notion of
a giant component, which forms naturally in skewed-degree
graphs [40]. Thus, more than 94% of the vertices can converge
to the zero value provided that the zero label is assigned to a
vertex in the giant component. Moreover, assuming that initial
labels are assigned uniformly at random, the zero label will
be assigned to the giant component with a probability of 94%.

The Zero Convergence optimization is implemented by
adding two branches in Lines 24 and 31 of the Algorithm 2,
which check if the vertex has converged to zero. If so, we
do not need to process the vertex further. Moreover, the
branch at line 31 implies that processing of a vertex terminates
immediately, as soon as its label becomes zero.

Section V-C2 shows that Zero Convergence tremendously
reduces the total processed edges: on average, DO-LP pro-
cesses each edge 7.7 times, while Thrifty processes only 1.4%
of the edges.

C. Zero Planting

In Section III-C we explained that DO-LP assigns initial
labels inefficiently which results in long propagation paths and
repeated wavefronts. To solve this, we need to ensure that the
smallest label is initially placed in the core of the graph, and
not on the fringes. Considering also the Zero Convergence
optimization, we should maximize the chance that the zero
label is assigned to the giant component. This is captured in
the Zero Planting technique.

We employ a simple heuristic to plant the zero label at the
start of the algorithm, namely to plant it in the vertex with the
highest degree. The rationale is two-fold: In a skewed-degree
graph with a giant component, the highest-degree vertex is
almost certainly a member of the giant component (if not,
the component containing the highest-degree vertex cannot
be giant). Secondly, the highest-degree vertex is likely a hub
vertex, i.e., it has a high centrality within the graph. As such,
it is few hops away from the other vertices in the same
component.

The Zero Planting technique is implemented in Lines 3-
9 of the Algorithm 2. The label of vertex v is initialized by
v + 1 (instead of v), and the zero label is reserved for the
vertex with the maximum degree. In Lines 5-7, each parallel
thread (with ID thread id) finds its local maximum degree
and the vertex with the maximum degree (between maximum
degrees reported by threads) receives the zero label in Line 9.

Section V-C3 shows that the Zero Planting technique
provides a very fast convergence rate of 88% of the vertices



after the first pull iteration as a result of removing or cutting
short those iterations that are required to propagate the label
zero to the hub vertices.

D. Initial Push

We observed that DO-LP starts off poorly in the first
iterations as the vast majority of the labels that are propagated
in these iterations will later be overwritten (see Section III-D).
As such, it starts off too aggressively with pull iterations that
propagate labels along all edges. However, identifying which
labels are not worth propagating is non-trivial in DO-LP.

The Zero Planting optimization enables Thrifty to selec-
tively propagate labels in the initial iterations. In Thrifty, the
goal is to make the giant component converge to label zero.
As such, we are initially only interested in propagating the
zero label. Once the zero label has propagated to a sufficient
number of highly connected vertices, it can propagate much
more quickly through the giant component. At this stage a
full-blown pull iteration (with zero convergence) becomes
effective, and will also effect label propagation through the
other components. Note that the other components are tiny
and hardly contribute to execution time.

The Initial Push technique states that the best traversal in
the first iteration is a push traversal of the zero label from
the vertex with the maximum degree to its neighbours. This
push traversal propagates the zero label as much as possible
without imposing the cost of processing all edges. The initial
push traversal is shown in Lines 11-12 of Algorithm 2.

Thrifty performs only one initial push iteration. This is
optimal due to the typical structure of graphs with skewed
degree distribution where many high-degree vertices are con-
nected to other high-degree vertices and have many common
neighbours. A first initial push iteration thus propagates the
zero label to a good number of high-degree vertices, and
a second push iteration would traverse many high-degree
vertices with many common neighbours. This would replicate
much of the work of propagating the zero label. In this way,
a pull traversal is more efficient [33] especially with zero
convergence check.

Section V-C4 shows that the Initial Push technique accel-
erates the execution time of the first iteration by 5.3×.

E. Thrifty Implementation and Data Structures

In this section we present more details of efficient imple-
mentation of Thrifty.

In Line 16 of the Algorithm 2 we use new threshold to
select push or pull traversal. By applying the convergence
optimizations that significantly reduce the execution time of
pull traversals, we identified 1% acts best as a threshold
between push and pull traversals. We evaluate the effect of
the threshold in Section V-E.

To accelerate pull iterations, we do not collect a detailed
frontier listing all active vertices. At the end of most pull
iterations, it suffices to know whether the frontier is dense
or sparse. As such, we count active vertices but do not record
which vertices are active. In the final pull iteration, prior to

switching to sparse iterations, a detailed frontier is necessary.
When Thrifty decides to switch to push traversal, it performs
a Pull-Frontier iteration, which is a pull iteration that also
identifies which vertices are active.

Push iterations are sparse and, as such executed quickly.
Some web graphs like UK-Union and WebBase-2001 have
more than 70 push iterations, and it is necessary to optimize
the push iterations. To this end, it is necessary to select data
structures carefully [41]. We assign local worklists to each
thread to collect its active vertices. We also use a shared
byte array between threads that shows if a vertex has been
previously added to the local worklist of any thread. The
byte array is written and read by all threads and the local
worklists are only written by their specific threads but are read
by all threads. We do not use atomic instructions to access the
shared byte array. In the case that one vertex will be added to
two local worklists due to a race condition, then that vertex
may be processed twice in the next iteration. This does not
affect the correctness of the algorithm. Each thread starts by
processing its local worklist and after that steals vertices from
the worklists of other threads.

F. Correctness of The Thrifty Algorithm

The Thrifty algorithm uses four optimizations and in this
section we show these optimizations do not change the cor-
rectness of the algorithm.

The Unified Labels Array technique uses one label array
for storing labels. It affects Lines 11 and 16 of the Algo-
rithm 1 where new lbls should be read instead of old lbls.
We assume vertex v reads old lbls for all of its neighbours
except neighbour n. Reading the new lblsn can change the
correctness of the algorithm only if v can not find any label
less than new lblsn in the current iteration. In this case v will
read new lblsn in the next iteration of DO-LP. This shows that
reading new lblsn instead of old lblsn in the current iteration
does not affect the correctness of the algorithm.

The Zero Convergence technique inserts comparisons to
zero to the DO-LP to stop processing edges when reaching the
zero label. As zero is the minimum value among all labels, no
changes can be applied to a label that has reached zero. This
shows that the Zero Convergence technique stops a process
that can not change the label of a vertex. In other words, the
Zero Convergence technique does not change the correctness
of the algorithm.

The correctness of DO-LP is independent of the initial label
assignment as long as vertices receive unique initial labels.
Therefore the Zero Planting technique that plants the zero
label in the vertex with maximum degree does not change the
correctness of the algorithm.

The Initial Push technique can be considered as the appli-
cation of a different schedule, i.e., the zero label is propagated
over one hop before considering other updates. The correctness
follows from the same argument as Unified Label Arrays.



TABLE II: Datasets

Dataset Name Type Power-Law Source |V| (M) |E| (B) |CC|
GBRd GB Roads Road Network No NR 8 0.016 1
USRd US Roads Road Network No NR 24 0.058 1
Pkc Pokec Social Network Yes KN 1.6 0.044 1
WWiki War Wikipedia Links Knowledge Graph Yes KN 2 0.052 1,245
LJLnks LiveJournal Links Social Network Yes KN 5 0.098 4,945
LJGrp LiveJournal Group Memberships Social Network Yes KN 7 0.225 1
Twtr10 Twitter 2010 Social Network Yes NR 21 0.530 1
Twtr Twitter Social Network Yes NR 28 0.956 31,445
Wbbs WebBase-2001 Web Graph Yes LWA 115 1.737 236,185
TwtrMpi Twitter-MPI Social Network Yes NR 41 2.405 1
Frndstr Friendster Social Network Yes NR 65 3.612 1
SK SK-Domain Web Graph Yes LWA 50 3.639 45
WbCc Web-CC12 Web Graph Yes NR 89 3.872 464,919
UKDls UK-Delis Web Graph Yes LWA 110 6.919 80,443
UU UK-Union Web Graph Yes LWA 133 9.359 278,716
UKDmn UK-Domain Web Graph Yes KN 105 6.603 14,333
ClWb9 ClueWeb09 Web Graph Yes NR 1,685 15.622 5,642,809

TABLE III: Computing Machines

SkyLakeX Epyc
CPU Model Intel Xeon Gold 6130 AMD Epyc 7702
CPU Frequency 2.10 GHz 2 GHz
Sockets 2 2
NUMA Nodes 2 8
Total CPU Cores 32 128
Hyperthreading No No
Total Threads 32 128
L1 Cache 32 KB / 1 core 32 KB / 1 core
L2 Cache 1 MB / 1 core 512 KB / 1 core
L3 Cache 22 MB / 16 cores 16 MB / 4 cores
Total Memory 768 GB 2,048 GB

V. EVALUATION

A. Machines and Datasets

We use two different machines listed in Table III for
evaluation. The machines use CentOS 7. We use an optimized
implementation of CC in the C language that deploys the
pthread, libnuma, and papi [42] libraries. We use the in-
terleaved NUMA memory policy and apply work-stealing [43]
for parallel processing of graph partitions created by vertex
and edge partitioning [44], [25].

We create 32 ∗ #threads edge balanced partitions and
partitions [32∗t, 32∗(t+1)) are initially assigned to thread t.
A thread processes its own partitions and then steals partitions
from threads on the same NUMA node and finally from
threads on other NUMA nodes. In order to preserve locality in
processing consequent partitions and increase reuse of cache
contents, a thread processes its own partitions in ascending
order and steals partitions from other threads in descending
order.

We use the master-worker model for managing parallel
threads and the futex syscall for thread synchronization. We
compiled the source code using the gcc-9.2 compiler with
-O3 optimization flag.

Table II shows the datasets and their sources: “Konect”
(KN) [45], [46], [47], “NetworkRepository” (NR) [48], [49],
[50], [51], [52], and “Laboratory for Web Algorithmics”
(LWA) [47], [53], [49], [54], [55]. Numbers of edges are in
billions and numbers of vertices are in millions, counted after
removing zero degree vertices because of their destructive
effect [25]. Graphs are represented in Compressed Sparse
Row/Column [31] with |V | + 1 index values of 8 bytes per
index value and |E| neighbour IDs of 4 bytes each. The
column |CC| shows the number of connected components in
each dataset. We use 4 bytes data as label of a vertex.

For comparison to other CC algorithms, we use BFS-CC
implemented in GraphGrind [30], [25] (commit 5099761),
and the Shiloach-Vishkin and Afforest implementations in
GAP [56] (commit 6ac1afd).

B. Comparison to Prior State of the Art

Table IV compares Thrifty to the prior state-of-the-art CC
algorithms. For road networks (GBRd and USRd) that do not
follow a power-law degree distribution SV, JT and Afforest are
faster than Thrifty. For graphs larger than LiveJournal,
Thrifty has the best results on both architectures: on the
SkyLake machine, Thrifty provides up to 3.9× and on av-
erage 1.6× speedup to Afforest, and 8.4 × −54.6× speedup
compared to the SV, JT, and BFS-CC algorithms. On the
EPYC machine Thrifty provides 1.5× speedup over Afforest
and 7.3×−65.3× over SV, JT, and BFS-CC algorithms.

The importance of Thrifty is not limited to having faster
execution time in comparison to Disjoint Set algorithms.
Disjoint Set algorithms like SV, Afforest, and JT are con-
current algorithms that do not scale to distributed memory
systems. One attempt at distributed disjoint sets notes lack of
scalability and net performance loss compared to sequential
algorithms [26]. In contrast, the SpMV model of the Label
Propagation algorithm allows successful scaling in distributed
systems [28], [29].

http://networkrepository.com/road-great-britain-osm.php
http://networkrepository.com/road-road-usa.php
http://konect.cc/networks/soc-pokec-relationships/
http://konect.cc/networks/wikipedia_link_war/
http://konect.cc/networks/livejournal-links/
http://konect.cc/networks/livejournal-groupmemberships/
http://networkrepository.com/soc-twitter-2010.php
networkrepository.com/soc-twitter.php
http://law.di.unimi.it/webdata/webbase-2001/
http://networkrepository.com/soc-twitter-mpi-sws.php
http://networkrepository.com/soc-friendster.php
http://law.di.unimi.it/webdata/sk-2005
http://networkrepository.com/web-cc12-hostgraph.php
http://law.di.unimi.it/webdata/uk-2007-02/
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
http://konect.cc/networks/dimacs10-uk-2007-05/
http://networkrepository.com/web-ClueWeb09.php
http://konect.cc
http://networkrepository.co
http://lwa.di.unimi.it
https://github.com/Jaiwen/GraphGrind
https://github.com/sbeamer/gapbs


TABLE IV: CC execution times in milliseconds for Shiloach-Vishkin (SV), BFS-CC, Direction Optimizing Label Propaga-
tion (DO-LP), Jayanti-Tarjan (JT), Afforest, and Thrifty Label Propagation (Thrifty)

Dataset Intel SkyLakeX AMD Epyc
SV BFS-CC DO-LP JT Afforest Thrifty SV BFS-CC DO-LP JT Afforest Thrifty

GBRd 32 494 12,131 24 13 383 185 875 12,233 24 93 677
USRd 120 1,037 38,435 85 38 992 268 1,760 20,752 46 116 1,843
Pkc 34 24 52 23 6 9 28 39 69 40 6 20
WWiki 61 28 52 30 4 9 60 55 77 116 6 28
LJLnks 114 95 111 56 13 14 72 133 183 61 13 20
LJGrp 928 94 141 58 20 12 856 127 118 61 16 24
Twtr10 3,849 351 816 634 56 38 4,277 215 689 1,012 122 49
Twtr 3,017 577 918 307 50 49 2,895 1,016 734 270 117 44
Wbbs 2,794 2,931 9,822 972 187 169 3,208 5,059 6,251 956 182 143
TwtrMpi 7,544 723 3,186 1,067 264 67 5,740 556 2,793 828 152 70
Frndstr 10,405 1,556 11,709 2,559 207 159 6,516 677 13,446 2,483 225 129
SK 1,985 768 1,631 566 153 104 1,518 858 1,095 209 145 108
WbCc 25,673 4,267 5,831 1,977 213 148 28,790 7,346 6,090 1,419 248 109
UKDls 3,587 1,358 4,773 925 299 234 2,391 1,913 2,903 310 202 198
UU 4,580 3,190 6,128 1,760 343 246 3,470 4,879 3,738 708 253 187
UKDmn 3,776 1,146 3,781 877 258 235 1,934 1,462 2,527 299 213 178
ClWb9 170,879 - 47,397 13,942 3,665 3,138 210,342 148,586 36,776 11,509 2,470 1,870

A second limitation of the Disjoint Set algorithms originates
from the fact that concurrent algorithms are very specific
solutions to a problem and require great precision in their
design and implementation [57]. Concurrent algorithms have
limited potential to generalize to other problems. In contrast,
the Thrifty algorithm that follows a SpMV model is more
generic and conceptually simple. Numerous frameworks have
been defined that present a reusable interface and hide numer-
ous performance optimizations behind that interface, out of
the concern of the user [27], [28], [29], [37], [58], [39].

C. Has Thrifty Reached Its Goals?

In this section we consider more details of the execution of
Thrifty to identify if it has reached the goals we explained in
Section IV. In the experiments of this section when we refer to
iterations of Thrifty, we count the Initial Push as an iteration.

1) Faster Label Propagation and Reducing Number of
Iterations: To facilitate faster propagation of the labels, we
suggested using the Unified Labels Array technique and
Table V shows that Thrifty reduces the total iterations by
39%, on average. For WebBase-2001, Thrifty reduces total
iterations by 89%.

2) Work Reduction: Figure 5 compares the speedup pro-
vided by Thrifty in comparison to DO-LP. It also shows the
percentage of edges of graphs that are processed by the Thrifty
and DO-LP algorithms. It shows that Thrifty reduces the total
traversed edges by at least 97%. In fact, Thrifty processes up
to only 4.4% of the edges of the graph which shows the Zero
Convergence can significantly reduce the total work.

Figure 6 also compares Thrifty to DO-LP for reduction in
(1) the last level cache misses, (2) memory accesses (load and
store memory instructions), (3) branch mis-predictions, and
(4) hardware instructions. It shows that Thrifty cuts at least
80% of the redundant work done by DO-LP.

TABLE V: Comparison of the number of iterations required
by DO-LP and Thrifty

Dataset DO-LP Thrifty Ratio
Pkc 10 5 0.50
WWiki 17 13 0.76
LJLnks 15 6 0.40
LJGrp 7 4 0.57
Twtr10 17 12 0.71
Twtr 15 11 0.73
Wbbs 744 82 0.11
TwtrMpi 15 11 0.73
Frndstr 24 12 0.50
SK 23 20 0.87
WbCc 32 30 0.94
UKDls 79 21 0.27
UU 142 99 0.70
UKDmn 76 41 0.54
ClWb9 79 70 0.89

3) Faster Propagation of The Zero Label: The Zero Plant-
ing technique is used in the Thrifty algorithm to propagate the
zero label from the vertex with the maximum degree. To see
its effect on propagation of the zero label, we compare the
percentage of converged vertices in the DO-LP and Thrifty in
Figures 7 and 8.

It shows that in DO-LP only 34.8% of the vertices are con-
verged after the first four pull iterations, but Thrifty propagates
the zero label much faster which results in convergence of
88.3% of the vertices after the first pull iteration.

4) Work Efficient Initial Iteration: To accelerate the first
iterations of the Label Propagation algorithm, the Initial Push
technique uses an initial push to propagate the zero label
from the vertex with the maximum degree. To evaluate if this
technique is useful, we compare the initial iterations of the
DO-LP and Thrifty in Table VI.

If we compare the time spent in the first iteration of DO-LP
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Fig. 5: Speedup and processed edges on the SkyLakeX machine
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(d) Hardware instructions

Fig. 6: Reduction (in percent) of hardware events on the SkyLakeX machine for execution of Thrifty in comparison to DO-LP
(higher is better)
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Fig. 8: Percentage of converged vertices in Thrifty

to the sum of the first iteration of Thrifty and its Initial Push,
we see that the Initial Push technique accelerates the initial
iteration of label propagation by 1.9×−14.2× and on average
by 5.3×. Moreover, Figures 7 and 8 show that more vertices
are converged in the first pull iteration of Thrifty.

D. Effect of The Optimizations
Figures 9 and 10 show the effect of the Unified Labels Array

technique in comparison to the effect of Zero Convergence,
Zero Planting and Initial Push techniques. The last three
techniques are dependent on each other and therefore we
measured the cumulative improvement of them.

For this experiment, we have executed a variant of the DO-
LP that also implements the Unified Labels Array technique.

Then we have compared the execution time of DO-LP, this
new variant, and Thrifty. The difference between execution
time of this variant to DO-LP shows the effect of the Unified
Labels Array technique, and its difference to Thrifty shows
the effect of the Zero Convergence, Zero Planting and Initial
Push techniques.

The figures show that, on average, about 65% of Thrifty’s
improvement is achieved by the Unified Labels Array tech-
nique and 35% by the Zero Convergence, Zero Planting and
Initial Push techniques.

E. Effect of The Threshold
To explain the effect of threshold for selecting push and

pull traversals (Section IV-E), Table VII shows the execution
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Fig. 9: Contribution of the optimization techniques on the
SkyLakeX machine
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Fig. 10: Contribution of the optimization techniques on the
Epyc machine

TABLE VI: Execution time of the first iterations on the
SkyLakeX machine in milliseconds

Dataset DO-LP Thrifty Speedup
Iteration 0 Iteration 0 Iteration 1

Pull Initial Push
Pull with

Zero Convergence
Pkc 6.1 0.9 2.0 2.1
WWiki 5.1 1.5 1.2 1.9
LJLnks 12.6 0.6 4.5 2.5
LJGrp 24.7 0.9 3.5 5.6
Twtr10 106.6 2.0 17.6 5.4
Twtr 170.7 3.3 17.6 8.2
Wbbs 136.2 1.7 71.1 1.9
TwtrMpi 617.4 3.4 40.2 14.2
Frndstr 1,415.9 0.7 107.3 13.1
SK 176.1 3.6 52.2 3.2
WbCc 799.0 5.6 73.7 10.1
UKDls 325.8 1.7 133.3 2.4
UU 452.1 3.2 144.8 3.1
UKDmn 319.5 1.8 122.7 2.6
ClWb9 4,350.2 12.2 1,435.7 3.0

TABLE VII: Effect of the threshold

Threshold = 1% Threshold = 5%
Iteration Traversal Density Time (ms) Traversal Density Time (ms)

2 Pull 1.16% 11.7 Pull 1.13% 11.5
3 Pull 0.01% 6.8 Pull Frontier - 8.8
4 Pull Frontier - 5.0 Push - 20.2
5 Push - 2.3 Push - 0.8

of the first iterations of the Friendster dataset on the
Epyc machine. By using 1% as the threshold, iteration 4 is
performed in the pull direction that requires 5ms but it is 20ms
in the push direction.

It shows that the Zero Convergence optimization is able
to accelerate the pull iterations which makes it harder for the
push traversal to compete. Therefore, it is necessary to have a
smaller threshold.

VI. RELATED WORK

The effectiveness of push and pull traversals for different
graph analytics is discussed in [59], [33], [34], and the
differences between locality of push and pull traversals have

been studied in [60]. iHTL [61] optimizes temporal locality
by applying push and pull directions in one graph traversal
but for different types of vertices. In order to improve the
performance of the CC algorithm, we have used the direction
optimizing CC as the baseline. DO-LP selects push traversal
for sparse iterations (where a small number of vertices are in
the frontier) and applies pull traversal for dense iterations.

The Shiloach-Vishkin CC algorithm [19] is the first Disjoint
Set CC. It makes a number of iterations, each of which makes
a pass over the graph. Each iteration is started by a hook phase
that attaches roots of subgraphs based on edges and is followed
by a shortcut phase that updates the label of each vertex of
subgraphs by the label of its root. BFS is used in [62] to
accelerate SV.

FastSV [63] improves performance of LACC [64], however,
both algorithms use MIN operator over labels to decide if the
label of a vertex should be changed. It makes these algorithms
variants of the Label Propagation CC instead of SV. The
main difference between LP and SV algorithms is in the
observations that result in changing the label of a vertex:
SV-based algorithms consider the topology of a graph (i.e.,
edges between vertices) to change their labels, while LP-based
algorithms consider the label of a vertex in relation to labels of
its neighbours to identify its new label. Shortcutting technique
is used in [65] to accelerate the label propagation CC.

The Jayanti-Tarjan [21] optimizes the SV algorithm based
on a linearizable randomized linking strategy. It requires only
one traversal of the graph. Afforest [22] uses sampling to
reduce the total number of processed edges. ConnectIt [24]
extends Afforest by combining various sampling methods with
various CC algorithms. We attempted to evaluate ConnectIt but
its code repository was under modification and could not be
compiled (we are communicating on this with the authors).

VII. CONCLUSION AND FUTURE WORK

The conceptual simplicity, in conjunction with the uncon-
tested dominance of Label Propagation in distributed memory
systems, prompts us to revisit Label Propagation in shared
memory systems. We developed performance optimization
techniques to improve the DO-LP algorithm based on the
features implied by the structure of real-world graph datasets
that follow a scale-free degree distribution:



1) The Unified Labels Array technique reduces the number
of iterations by 39%.

2) The Zero Convergence technique reduces the number of
processed edges of the graphs to 1.4% of the edges, on
average.

3) The Zero Planting technique provides fast convergence
of 88% of the vertices after the first pull iteration.

4) The Initial Push technique accelerates the initial iteration
of label propagation by 5.3×, on average.

We introduced Thrifty Label Propagation, which deploys
these techniques. Our evaluation of Thrifty against state-of-
the-art CC algorithms on two different processor architectures
shows 1.4× speedup over Afforest, 7.3× over Jayanti-Tarjan,
14.7× over BFS-CC, 51.2× over SV. The Thrifty algorithm
is faster than the Direction Optimizing Label Propagation by
25.2×.

An important question for future work is how Thrifty applies
in a distributed processing setting, where label propagation
algorithms are the norm. We plan to apply Thrifty to a
distributed processing model like KLA [38]. Moreover, the
unordered scheduling of the vertices based on the KLA model
can be used in a shared memory system to provide better CPU
utilization.

The optimization techniques we expressed for the Label
Propagation algorithm are not strictly limited to connected
components. In future work we will investigate how these can
be generalized to other algorithms expressed in the SpMV
model of graph processing. In particular, we wish to explore
the connection between the unified arrays optimization and
asynchronous execution.

CODE AVAILABILITY

Source code repository and further discussions
relating to this paper are available online in https:
//blogs.qub.ac.uk/graphprocessing/Thrifty-Label-Propagation-
Fast-Connected-Components-for-Skewed-Degree-Graphs/.
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