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Abstract
The Minimum Spanning Forest (MSF) problem finds usage
in many different applications. While theoretical analysis
shows that linear-time solutions exist, in practice, parallel
MSF algorithms remain computationally demanding due to
the continuously increasing size of data sets.
In this paper, we study the MSF algorithm from the per-

spective of graph structure and investigate the implications
of the power-law degree distribution of real-world graphs
on this algorithm.
We introduce the MASTIFF algorithm as a structure-

aware MSF algorithm that optimizes work efficiency by
(1) dynamically tracking the largest forest component of
each graph component and exempting them from process-
ing, and (2) by avoiding topology-related operations such as
relabeling and merging neighbour lists.
The evaluations on 2 different processor architectures

with up to 128 cores and on graphs of up to 124 billion edges,
shows that Mastiff is 3.4–5.9× faster than previous works.

CCS Concepts: • Computing methodologies → Shared
memory algorithms; Massively parallel algorithms; •
General and reference → Performance.

Keywords: Graph Algorithms, High Performance Comput-
ing, Real-World Graphs, Minimum Spanning Tree, Minimum
Spanning Forest
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1 Introduction
Finding the Minimum Spanning Forest (MSF) is one of the ba-
sic graph algorithms with several usages in different fields of
technology, science, and humanities [11, 22, 24, 41, 53, 58, 61].
Among different MSF algorithms, Borůvka’s algorithm [11]
provides good opportunities for parallel execution. The al-
gorithm is organized around a number of iterations. In each
iteration, the lightest edge of each vertex is selected as an
edge of MSF. Then, the graph is contracted over the selected
edges, i.e., vertices in each component (formed by the se-
lected edges) are merged and a new graph is created by
relabeling the vertices and merging the neighbour lists. This
new graph is used in the next iteration.

Contraction of the graph eliminates intra-component edges
and makes the next iteration efficient. However, our evalua-
tion shows that topology rewriting requires more than
50% of execution time (Section 3.1). The alternative is to
not contract the graph. This approach has been shown to
have the same asymptotic time complexity as rewriting the
graph topology [22] as it is required to process all edges of
the graph in each iteration. Thus, the practical choice is to
spend time either contracting the graph, or to spend time
traversing all edges.
On the other hand, the fast-growing size of real-world

graphs and their special structure necessitate fast and effi-
cient MSF algorithms. Many real-world graphs derived from
social networks, the internet and the world-wide web, or
from bio-informatics, show a skewed degree distribution,
following a power-law distribution: a small fraction of
vertices with very large degrees (known as hubs) are con-
nected to a disproportionately large fraction of edges.
We start with studying the effects of power-law degree

distribution of graphs on formation of components in con-
secutive iterations of Borůvka’s algorithm. Our study shows
that as a result of the small-world property in power-law
graphs, a great percentage of vertices tend to quickly
connect to each other, resulting in a large and fast-
growing component.

https://blogs.qub.ac.uk/GraphProcessing
https://doi.org/10.1145/3524059.3532365
https://doi.org/10.1145/3524059.3532365
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(a) Initial Graph
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(b) After 1st Iteration
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(c) After 2nd Iteration
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Figure 1. Execution of Borůvka’s algorithm

Moreover, in each iteration of Borůvka’s algorithm a com-
ponent finds at most one edge to another component; there-
fore, it is more efficient to skip processing the fast-growing
component (whose great number of edges requires a great
amount of processing) and to allow other components (with
much smaller number of edges to be processed) to attach
themselves to this component.

Based on this, we introduce theMASTIFF algorithm that
dynamically tracks the largest component in each graph com-
ponent and exempts them from processing. Mastiff uses a
disjoint-set mechanism [15, 51, 56] to efficiently manage the
relationship between vertices without performing time-
and memory-consuming topology operations. As a re-
sult, Mastiff reduces the additional memory space require-
ment from O( |𝐸 |) to O( |𝑉 |).

Experimental evaluation on 2 processor architectures with
up to 128 cores and for graphs up to 124 billion edges shows
that Mastiff is 3.4–5.9× faster than previous works.
This paper is structured as follows: Section 2 explains

background material and Section 3 demonstrates the key
observations that motivate the design of Mastiff. Section 4
introduces the Mastiff algorithm which is evaluated in Sec-
tion 5. Section 6 discusses further related work and avenues
for future work are presented in Section 7.

2 Background
2.1 Terminology
An undirected weighted graph 𝐺 = (𝑉 , 𝐸,𝑊 ) has a set of
vertices 𝑉 , a set of edges 𝐸, and as set of weights𝑊 . Edge
(𝑢, 𝑣,𝑤) is an edge between vertices 𝑣 and 𝑢 and the weight
of this edge is𝑤 . 𝐺 may have a number of connected com-
ponents that are called graph components.

The Minimum Spanning Tree (MST) of a weighted, undi-
rected, and connected graph is a tree over all vertices and
with the minimum sum of the weights of the edges. If the
graph has more than one connected component, the Min-
imum Spanning Forest is defined as the set of MSTs of all
graph components.
In this paper, the term component is referred to a com-

ponent of the MSF during its construction. A component

contains a number of vertices that are connected by a subset
of edges of the MSF.
Initially, each vertex of the graph is a component (with

no edge between vertices) and then components of a graph
component are gradually connected together by edges that
shape the MST of that graph component.

As an example, Figure 1a shows a graph that has only one
graph component. Figure 1b shows an intermediate level in
constructing MST (which is also the MSF as the graph has
only one component). Here, 3 components with names A,
B, and C are seen. Each of these components include one or
more vertices. Components A and C have two vertices, and
component B has 6 vertices.
The cut property states that for each cut of the vertices,

the lightest edge between two partitions is in the MSF. The
cycle property states that the heaviest edge of each cycle of
a graph is not in its MSF. For a graph with distinct weights
of edges, only one MSF exists [22].

2.2 Borůvka’s Algorithm
Borůvka’s algorithm is performed in a number of iterations.
Each iteration has 3 steps: (1) finding the lightest edge of each
vertex (that specifies an edge in the MSF), (2) identifying the
components connected by the lightest edges, and (3) merging
vertices in the same component and making the new graph
ready for the next iteration.

Figure 1 shows an example of the execution of Borůvka’s
algorithm. In the first iteration, the edge between vertices
0 and 1 is selected as their lightest edge. Vertex 3 selects its
edge with weight 4 to vertex 2 as the lightest edge. In the
same way, other vertices select their lightest edges as edges
of the MST.
Figure 1b shows how the 3 components are formed after

the first iteration and each component contains a number of
vertices of the main graph. The intra-component edges are
removed and the new graph has 3 vertices (A, B, and C).

The edges of the new graph are the lightest inter-component
edges. Vertices in component A have 3 edges to the vertices
in component B with weights 2 and 3. The lightest edge is
selected as the edge between components A and B. In the
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Figure 2. Percentage of execution time spent in topology
operations
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Figure 3. Size of the largest component

Figure 4. Degree distribution of graphs and their MSF

same way, the edge with weight 3 is selected as the edge
between components B and C.
The next iteration continues selecting the lightest edges

of the new graph and merging more vertices until only one
vertex remains for each component of the main graph (Fig-
ure 1c).

3 Motivation
3.1 Cost of Topology Rewriting
Figure 2 shows the practical cost of rewriting the graph topol-
ogy to effect the contraction of connected vertices. The graph
data sets are presented in Table 2, page 7. These measure-
ments show the high cost of topology rewriting: between
56% and 81% of the execution time is spent in contract-
ing the graph.
During each iteration of Borůvka’s algorithm, up to one

edge is selected per component and the number of com-
ponents reduces by up to half after each iteration; as a
result, fewer edges are selected in the next iteration. On
the other hand, if we avoid rewriting the graph topology,
the required time for identifying the lightest edges remains
constant; therefore, the time spent per lightest edge in-
creases starkly as iterations progress.
This shows that a fundamental solution is necessary to

make it beneficial to avoid rewriting the graph topology.

3.2 Formation of a Giant Component
Power-law graphs have a high degree of connectivity be-
tween the hubs. This strong interlinking of hubs aligns with
the presence of a giant component in the graph. The hub
vertices connect to a large portion of edges of the graph. Con-
sequently, hubs share edges with most low-degree vertices.

This pattern repeats when constructing the MSF. Hubs
are likely to be incident upon the lowest-weight edges
of many low-degree vertices, based on the statistical fre-
quency of the number of their edges. Moreover, in some
graphs the weights of edges that connect low-degree ver-
tices to high-degree vertices are particularly smaller than the
weights of edges between low-degree vertices. Consequently,
the MSF grows very quickly around the hubs, resulting in the
creation of a component containing a large percentage
of the vertices.
Figure 3 confirms the creation of a giant component in

the MSF. It shows the size of the largest component of each
dataset, relative to the total graph size, after each iteration
of Borůvka’s algorithm. It takes 3-6 iterations for the giant
component to form.
Figure 4 shows the degree distribution of the graphs and

their MSF. We see that MSF of the power-law graphs has a
power-law degree distribution. The presence of hub vertices
in the MSF shows that most of the hub edges of the main
graph have been selected by the MSF. It explains that hubs
(and components containing hubs) have more chance to
be selected by other vertices as the destination of lightest
edges as hubs have a large percentage of edges, i.e., a large
percentage of the lightest edges.

4 MASTIFF
4.1 Mastiff Idea
Assume we have a graph component containing 𝑐 compo-
nents in an iteration of Borůvka’s algorithm. In this case,
at most 𝑐 − 1 lightest edges can be selected. Each of the
components [1, 𝑐 − 1] can select an edge to a non-selected
component. But the last component should select an edge
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to one of the previously selected components (as there is no
other component). Moreover, since each two vertices can be
connected by at most one edge, this edge is the lightest edge
of both endpoints and the last component selects a repeated
lightest edge.
In this way, at least two components between 𝑐 com-

ponents select the same lightest edge; therefore, it is
more efficient to process only 𝑐 − 1 components.
As an example, in Figure 1b we have components A, B,

and C that together will finally shape a MST. In this iteration,
we can exempt each of the components from processing:

1. If we exempt component A, then component B selects
the edge of weight 2 and component C selects the edge
of weight 3.

2. If we exempt component B, then component A selects
the edge of weight 2 and component C selects the edge
of weight 3.

3. If we exempt component C, then both components A
and B select their lightest edge which is the edge of
weight 2 and the edge of weight 3 is selected in the
next iteration.

As a very large component is formed in power-law graphs
(Section 3.2), Mastiff selects the largest component as
the best candidate to be exempted from processing.
As an example, in Figure 1b component B (that contains

vertices with grey background) is the largest component
and is exempted form processing in the second iteration.
Components A and C find their lightest edge and the MST
becomes completed. In the following lines, we show that
the MSF result is not changed as a result of modifications
applied by Mastiff.

Theorem. Exempting one component from a graph com-
ponent does not change the selection of the lightest edges
in MSF.

Proof. Assume edge 𝑒 = (𝑢, 𝑣,𝑤) is an edge between
vertices𝑢 and 𝑣 that finally appears in MST containing𝑢 and
𝑣 . In an iteration, the component containing 𝑢 is exempted
from processing and 𝑒 is the lightest edge of this component,
then two conditions can be supposed:

(i) 𝑒 is also the lightest edge of the component containing
𝑣 , and therefore 𝑒 is selected in the current iteration, and

(ii) 𝑒 is not the lightest edge of the component containing
𝑣 , and therefore 𝑒 is not selected until a future iteration
where (a) 𝑢 is not exempted from processing and therefore 𝑒
is selected (as 𝑒 is the lightest edge of this component), or
(b) the component containing 𝑣 does not have any lighter
edges to components other than component containing 𝑣 .
In this case, no edges lighter than 𝑒 between components
containing 𝑢 and 𝑣 can exist because such an edge results in
the contradiction that 𝑒 , as the lightest edge between 𝑢 and
𝑣 , has been on the MST.

ROOTMERGED EXEMPT

Start Point

Figure 5. Vertex statuses and their transitions in Mastiff

4.2 High-Level Algorithm
In each iteration of the Mastiff algorithm, the largest compo-
nent of each graph component is selected as EXEMPT and all
other components select their lightest edges.

After selecting the lightest edges, it is required to create a
new graph; however, as Mastiff does not process the largest
components, we avoid time-consuming operations for creat-
ing the new graph (Section 3.1). In spite of that, we need to
track (1) the status of each vertex, and (2) the relationship
between vertices.

To track the condition of each vertex, Mastiff assigns Sta-
tus to each vertex. Figure 5 shows different vertex statuses
and their transitions:

1. Each vertex is initially in the ROOT status that specifies
the vertex should be processed to identify its lightest
edge.

2. When a vertex selects a lightest edge to another vertex,
the edge is added to MSF and the status of the vertex
is changed to MERGED.

3. If a ROOT vertex is identified by theMastiff algorithm as
an EXEMPT vertex, this vertex and all vertices that are
MERGED into this vertex are exempted from processing.
As Mastiff dynamically selects the largest components
as exempted, it is possible for the status of a vertex to
return to ROOT from EXEMPT.

Mastiff uses a disjoint-set mechanism to track the relation-
ship between vertices. A Parent array is used to specify the
component of each vertex. Initially, each vertex is its 𝑃𝑎𝑟𝑒𝑛𝑡
and upon selecting a lightest edge, the 𝑃𝑎𝑟𝑒𝑛𝑡 of the vertex
is set to the other endpoint of the selected edge.
For vertices with ROOT or EXEMPT statuses, 𝑃𝑎𝑟𝑒𝑛𝑡 of the

vertex is the same as the vertex. But, 𝑃𝑎𝑟𝑒𝑛𝑡 of a vertex with
MERGED status cannot be the same as the vertex.
After selecting the lightest edge in each iteration, it is

enough to change the status of MERGED vertices and to update
the 𝑃𝑎𝑟𝑒𝑛𝑡 of vertices. Then, in selecting the lightest edge
in the next iteration, the intra-component edges are filtered
by using the 𝑃𝑎𝑟𝑒𝑛𝑡 array.

4.3 Mastiff Algorithm
Algorithm 1 shows the Mastiff algorithm. In addition to
𝑆𝑡𝑎𝑡𝑢𝑠 and 𝑃𝑎𝑟𝑒𝑛𝑡 arrays explained in Section 4.2, Mastiff
requires two other arrays (Lines 1-7):
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Algorithm 1:Mastiff
Input: 𝐺 (𝑉 , 𝐸)
Output:MSF

/* Declaring variables */

1 Vertex_Statuses = { ROOT, MERGED, EXEMPT};
2 Array 𝑀𝑆𝐹 ; // Output

3 Array 𝑆𝑡𝑎𝑡𝑢𝑠 ; // Status of vertices

4 Array 𝑃𝑎𝑟𝑒𝑛𝑡 ; // Parent of vertices

5 Array 𝐿𝐸 ; // Lightest Edges

6 Array 𝐶𝑆 ; // Component Size

7 𝑅𝑉 _𝑐𝑜𝑢𝑛𝑡 ; // Root Vertices Count

/* Set max-degree vertex as graph component ID */

8 𝐺𝐶 = connected_components(𝐺) ; // Graph Components

9 Array 𝑀𝐷𝑉 = {0} ; // Max Degree Vertex

/* Finding the max-degree vertex of each graph component */

10 par_for 𝑣 ∈ 𝑉

11 atomic_arg_max( 𝑀𝐷𝑉𝐺𝐶𝑣
, 𝑣, 𝑑𝑒𝑔𝑟𝑒𝑒);

/* Updating graph component of vertices */

12 par_for 𝑣 ∈ 𝑉

13 𝐺𝐶𝑣 = 𝑀𝐷𝑉𝐺𝐶𝑣
;

/* Initializing variables */

14 par_for 𝑣 ∈ 𝑉
/* Each vertex is initially a component */

15 𝑃𝑎𝑟𝑒𝑛𝑡𝑣 = 𝑣 ;
16 𝐶𝑆𝑣 = 1;
17 if 𝐺𝐶𝑣 == 𝑣 then

/* 𝑣 is the max-degree vertex */

18 𝑆𝑡𝑎𝑡𝑢𝑠𝑣 = EXEMPT;
19 else
20 𝑆𝑡𝑎𝑡𝑢𝑠𝑣 = ROOT

21 𝑅𝑉 _𝑐𝑜𝑢𝑛𝑡 = |𝐺.𝑉 | − |𝐺𝐶 |;

/* Iterations */

22 while 𝑅𝑉 _𝑐𝑜𝑢𝑛𝑡 > 0 do
/* (Step-1) Find the lightest edges of components */

23 par_for {𝑣 ∈ 𝑉 | 𝑆𝑡𝑎𝑡𝑢𝑠𝑃𝑎𝑟𝑒𝑛𝑡𝑣 = ROOT}
24 𝑙𝑒 = ∅;
25 for 𝑒 ∈ 𝑣 .𝑒𝑑𝑔𝑒𝑠 do

/* An intra-component edge */

26 if 𝑃𝑎𝑟𝑒𝑛𝑡𝑣 == 𝑃𝑎𝑟𝑒𝑛𝑡𝑒.𝑑𝑒𝑠𝑡 then continue;
/* A heavier edge */

27 if 𝑙𝑒 .𝑤𝑒𝑖𝑔ℎ𝑡 < 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 then continue;
28 𝑙𝑒 = 𝑒;
29 atomic_min(𝐿𝐸𝑃𝑎𝑟𝑒𝑛𝑡𝑣 , 𝑙𝑒);

/* (Step-2) Skip the repeated edges */

30 par_for {𝑣 ∈ 𝑉 | 𝑆𝑡𝑎𝑡𝑢𝑠𝑣 = ROOT}
31 𝑑𝑒𝑠𝑡 = 𝑃𝑎𝑟𝑒𝑛𝑡𝐿𝐸𝑣 .𝑑𝑒𝑠𝑡 ; // destination component

32 if 𝑣 == 𝐿𝐸𝑑𝑒𝑠𝑡 .𝑑𝑒𝑠𝑡 ∧ 𝑣 > 𝑑𝑒𝑠𝑡 then
33 𝐿𝐸𝑣 = ∅;

/* (Step-3) Append vertices */

34 par_for {𝑣 ∈ 𝑉 | 𝑆𝑡𝑎𝑡𝑢𝑠𝑣 = ROOT ∧ 𝐿𝐸𝑣 ≠ ∅}
35 𝑀𝑆𝐹 .push(𝐿𝐸𝑣) ; // race-free

36 𝑃𝑎𝑟𝑒𝑛𝑡𝑣 = 𝑃𝑎𝑟𝑒𝑛𝑡𝐿𝐸𝑣 .𝑑𝑒𝑠𝑡 ;
37 𝐿𝐸𝑣 = ∅;

/* (Step-4) Update variables */

38 par_for {𝑣 ∈ 𝑉 }
39 compress_path(𝑃𝑎𝑟𝑒𝑛𝑡, 𝑣) ;
40 if 𝑃𝑎𝑟𝑒𝑛𝑡𝑣 ≠ 𝑣 ∧ 𝑆𝑡𝑎𝑡𝑢𝑠𝑣 = ROOT then
41 𝐶𝑆𝑃𝑎𝑟𝑒𝑛𝑡𝑣 += 𝐶𝑆𝑣 ; // atomic

42 𝑆𝑡𝑎𝑡𝑢𝑠𝑣 = MERGED;
43 𝑅𝑉 _𝑐𝑜𝑢𝑛𝑡 −− ; // race-free

/* (Step-5) Set the greatest components as EXEMPT */

44 𝑀𝑎𝑥_𝐶𝑆 = ∅;
45 par_for {𝑣 ∈ 𝑉 | 𝑆𝑡𝑎𝑡𝑢𝑠𝑣 ≠ MERGED}
46 𝑆𝑡𝑎𝑡𝑢𝑠𝑣 = ROOT;
47 atomic_arg_max( 𝑀𝑎𝑥_𝐶𝑆𝐺𝐶𝑣

, 𝑣, 𝐶𝑆);
48 par_for {𝑣 ∈ 𝑉 | is_set(𝑀𝑎𝑥_𝐶𝑆𝑣)}
49 𝑆𝑡𝑎𝑡𝑢𝑠𝑀𝑎𝑥_𝐶𝑆𝑣

= EXEMPT;
50 return 𝑀𝑆𝐹 ;

• The 𝐿𝐸 array specifies the lightest edge of ROOT ver-
tices.

• The𝐶𝑆 array specifies the size of components, i.e., the
number of vertices that have been merged into ROOT
vertices. Initially, 𝐶𝑆𝑣 is set to 1 for each vertex 𝑣 . At
the end of each iteration the 𝐶𝑆 values of vertices are
updated. We use 𝐶𝑆 to identify the largest component
of each graph component.

As we explained in Section 4.1, Mastiff needs to iden-
tify the largest component of each graph component. So
it starts with identifying the connected components of the
main graph (Line 8). In the first iteration, Mastiff selects the

vertices with maximum degree in their graph components
as EXEMPT vertices.
To that end, it is required (1) to loop over all vertices

in each component to identify the ID of the vertex with
maximum degree (Lines 10-11), and then (2) to assign the
ID of the vertex with maximum degree of each component
as graph component ID of all vertices in that component
(Lines 12-13).

atomic_arg_max(𝑥, 𝑦, 𝑝𝑟𝑜𝑝) (used in Lines 11 and 47)
atomically compares the 𝑝𝑟𝑜𝑝 property of𝑥 and𝑦 and assigns
𝑦 to 𝑥 if 𝑦 has a greater value of 𝑝𝑟𝑜𝑝 .

Then, the variables are initialized in Lines 14-21. The
𝑃𝑎𝑟𝑒𝑛𝑡 of vertex 𝑣 is set to 𝑣 and 𝐶𝑆 of each vertex is set
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to 1. The 𝑆𝑡𝑎𝑡𝑢𝑠 of all vertices is set to ROOT, except for the
vertex of the maximum degree in each component whose
status is set to EXEMPT. The 𝑅𝑉 _𝑐𝑜𝑢𝑛𝑡 specifies the number
of ROOT vertices (Line 21) and is used to identify the end of
iterations (Line 22).

Each iteration of Mastiff (Lines 23-49) has 5 steps:
(1) Finding the lightest edge of ROOT vertices: In this

step (Lines 23-29), each ROOT vertex and vertices that are
MERGED into ROOT vertices traverse their neighbour-lists and
skip the intra-component edges (Line 26), and identify the
lightest inter-component edges (Lines 27-28). This lightest
edge is set as the lightest edge of the component (i.e., 𝑃𝑎𝑟𝑒𝑛𝑡
of the vertex), if it is lighter than the current one (Line 29).

(2) Removing the symmetric edges: In Lines 30-33, the
lightest edges of the ROOT vertices are considered to check if
an edge has been selected twice as the lightest edge between
two components. If so, the lightest edge of one endpoint is
discarded. This avoids adding one edge twice to the forest
and also avoids making loops in the 𝑃𝑎𝑟𝑒𝑛𝑡 array.
(3) Adding the selected edges to the forest: In this step

(Lines 34-37), the lightest edges of the ROOT vertices are added
to the forest and the 𝑃𝑎𝑟𝑒𝑛𝑡 of recently merged vertices is
updated. As the 𝑃𝑎𝑟𝑒𝑛𝑡 array is changed in this step, steps 2
and 3 cannot be fused.

(4) Updating the variables: This step (Lines 38-43), starts
with updating the 𝑃𝑎𝑟𝑒𝑛𝑡 of each vertex.

Since a number of ROOT vertices may merge to each other
in an iteration, it is necessary to identify a representative
component as the 𝑃𝑎𝑟𝑒𝑛𝑡 value for all of the MERGED vertices
in a component to be able to filter intra-component edges in
the first step of the next iteration. In Mastiff, the component
of a vertex (i.e., the representative for all vertices in the same
component) is its first non-MERGED 𝑃𝑎𝑟𝑒𝑛𝑡 , that is identified
by the compress_path() function in Lines 39. Then, this
function performs full-path compression by updating the
𝑃𝑎𝑟𝑒𝑛𝑡 of all intermediate MERGED vertices.

There are different ways to select the representative of a
component in disjoint-set algorithms [1, 2, 5, 15, 51, 56]. Since
the depth of trees is less than 20 (Section 5.6) and to avoid
imposing overheads, we use the default vertex specified in
the previous step (with 𝑃𝑎𝑟𝑒𝑛𝑡𝑣 = 𝑣) as the representative.
After updating the 𝑃𝑎𝑟𝑒𝑛𝑡 of the vertex (Line 39), if the

vertex that has been merged into another vertex in the cur-
rent iteration (Line 40): (i) the 𝐶𝑆 of the 𝑃𝑎𝑟𝑒𝑛𝑡 vertex is
updated in Line 41 (to be able to identify the largest compo-
nents in the next step), (ii) the status of the vertex is changed
to MERGED in Line 42, and (iii) the number of ROOT vertices
(𝑅𝑉 _𝑐𝑜𝑢𝑛𝑡 ) is reduced by one in Line 43.

(5) Updating the EXEMPT vertices: This step is per-
formed in Lines 44-49. First, a pass over all ROOT and EXEMPT
vertices is made that identifies the ID of the vertex with
maximum 𝐶𝑆 of each graph component (Lines 45-47). These
vertices are representatives of the largest components of

graph components (Section 4.1) and are marked as EXEMPT
in the second pass in Lines 48-49.
During the execution of Mastiff, exactly one component

of each graph component is EXEMPT; therefore, 𝑅𝑉 _𝑐𝑜𝑢𝑛𝑡 is
not changed in step 5.

4.4 Implementation
The atomic_arg_max() in Lines 11 and 47 is implemented as
a loop of 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑎𝑛𝑑_𝑠𝑤𝑎𝑝 (); however, as the maximum
value is written, the majority of the accesses to this function
are performed without atomic memory accesses.
In addition to the add operation in Line 41 which is per-

formed atomically, there are two other cases that require
protection from concurrent processing: (1) in Line 35 adding
an edge to the MSF is protected by assigning a buffer for each
thread to collect all its edges, and (2) in Line 43, 𝑅𝑉 _𝑐𝑜𝑢𝑛𝑡
is protected by reduction. To that end, each thread has a
private counter that is increased and then, the total sum of
counters are reduced from 𝑅𝑉 _𝑐𝑜𝑢𝑛𝑡 .

In step 2 of thewhile loop (Lines 30-33), the edges that are
selected as the lightest edge of both endpoint components
are identified and the selection of one endpoint is ignored.
There is still another case that can result in a cycle when the
graph does not have unique weights.

Assume that the graph has a cycle containing more than 2
vertices and each edge on this cycle has the same weight and,
moreover, each of these edges of the cycle are the lightest
edge of their endpoints. As we have more than 2 vertices
in this cycle, random selection of the lightest edges of the
vertices/components on this cycle results in adding a cycle
to the MST.

To prevent formation of these same-weight lightest cy-
cles, it is necessary to identify the lightest edge of each
vertex with the minimum 𝑃𝑎𝑟𝑒𝑛𝑡 ID. To that end, in Lines 27
and 29 we need to update the lightest edge if: (i) a new edge
with lightest weight is found, OR if (ii) the new edge has the
same weight but its 𝑃𝑎𝑟𝑒𝑛𝑡 is smaller than the 𝑃𝑎𝑟𝑒𝑛𝑡 of the
current lightest edge.

5 Evaluation
5.1 Experimental Setup
We present experiments on 2 machines with different pro-
cessor architectures, listed in Table 1. The machines use
CentOS 7.
Table 2 shows the datasets and their sources: “Konect”

(KN) [7, 34, 42], “NetworkRepository” (NR) [10, 13, 16, 47, 52],
“Laboratory forWebAlgorithmics” (LWA) [7–10, 35], and “Web
Data Commons” (WDC) [36, 38, 39]. Datasets types are Road
Networks (RN), Knowledge Graph (KG), Social Network (SN),
and Web Graph (WG). Numbers of symmetric edges are
shown in billions and numbers of vertices are in millions,
counted after removing zero degree vertices.

http://konect.cc
http://networkrepository.co
http://law.di.unimi.it
http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/
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SkyLakeX Epyc
CPU Model Intel Xeon Gold 6130 AMD Epyc 7702
CPU Frequency 2.10 GHz 2 GHz
Sockets 2 2
NUMA Nodes 2 8
Total CPU Cores 32 128
Hyperthreading No No
Total Threads 32 128
L1 Cache 32 KB / 1 core 32 KB / 1 core
L2 Cache 1 MB / 1 core 512 KB / 1 core
L3 Cache 22 MB / 16 cores 16 MB / 4 cores
Total L3 Cache 44 MB 512 MB
Total Memory 768 GB 2,048 GB

Table 1. Machines
Dataset Name Type Source |V| (M) |E| (B)
GBRd GB Roads RN NR 8 0.02
USRd US Roads RN NR 24 0.06
WWiki War Wikipedia KG KN 2 0.05
LJ LiveJournal Links SN KN 5 0.10
LJGrp LiveJournal SN KN 7 0.22
Twtr10 Twitter 2010 SN NR 21 0.53
Twtr Twitter SN NR 28 0.96
WebB WebBase-2001 WG LWA 114 1.71
TwtrMpi Twitter-MPI SN NR 41 2.41
Frndstr Friendster SN NR 65 3.61
SK SK-Domain WG LWA 50 3.64
WbCc Web-CC12 WG NR 89 3.87
UKDls UK-Delis WG LWA 110 6.92
UU UK-Union WG LWA 133 9.36
UKDmn UK-Domain WG KN 105 6.60
ClWb12 ClueWeb12 WG LWA 978 74.7
UK14 UK-2014 WG LWA 787 84.9
WDC14 WDC 2014 WG WDC 1,724 123.8

Table 2. Datasets

Graphs are represented in CSX (Compressed Sparse Row /
Column) [49] format with |𝑉 | + 1 index values of 8 bytes per
index value and |𝐸 | elements for edges. Each edge contains
4 bytes as neighbour ID and 4 bytes as weight. Weights are
assigned randomly.

We implementedMastiff in the C language using the OpenMP
API [19], libnuma, and papi [57] libraries. We use the in-
terleaved NUMA memory policy and to have a better load
balance[50] in processing edges, we use edge-balanced par-
titions [54]. Other loops over vertices are performed using
vertex-balanced partitions. The gcc-9.2 used as compiler
with -O3 flag.

We evaluate Mastiff in comparison to implementations
of Borůvka’s algorithm in (1) GBBS [20] (commit 38964eb,
OpenMP) and in (2) Galois [43] (release 6).

5.2 Comparison to Previous Works
Table 3 compares the execution time of Mastiff to Borůvka’s
implementations in GBBS and Galois. GBBS uses edge buck-
eting [18, 48, 63] that runs Borůvka’s algorithm multiple
times and each time for a bucket of edges (separated based

Dataset SkyLakeX Epyc
Galois GBBS Mastiff GBBS Mastiff

GBRd – 0.13 0.19 0.11 0.14
USRd – 0.39 0.51 0.22 0.32
WWiki 0.39 0.23 0.09 0.15 0.17
LJ 1.21 0.43 0.25 0.23 0.20
LJGrp 1.00 2.01 0.21 1.49 0.20
Twtr10 15.61 4.97 0.67 3.65 0.52
Twtr 5.3 4.3 1.0 3.5 0.7
WebB 30.7 5.3 2.9 2.8 1.4
TwtrMpi 10.9 8.9 2.4 10.1 1.9
Frndstr 16.9 11.4 9.0 8.1 7.5
SK 7.0 9.2 2.5 3.2 1.3
WbCc 16.6 26.6 5.6 16.5 3.8
UKDls – 13.3 5.8 10.7 2.4
UU 22.0 12.8 8.4 11.4 3.3
UKDmn 13.5 13.4 5.8 10.5 2.4
ClWb12 118.7 22.2
UK14 97.0 27.0
WDC14 – 45.7
Mastiff Avg.
Speedup 5.9× 3.2× 3.5×

Table 3.MSF execution times in seconds - Failed attempts
are shown by dash - Avg. Speedup is arithmetic mean over
Mastiff speedup for each dataset

on weight of edges). Galois uses a disjoint set structure to
avoid rewriting neighbour lists after selecting the lightest
edges. Galois performs a preprocessing step to sort edges of
vertices that have not been included in the execution time.

The SkyLakeX machine has been used for graphs smaller
than ClueWeb12 and Table 3 shows that Mastiff is 5.9 times
faster than Galois and 3.2 times faster than GBBS. The Epyc
machine has been used for all datasets and Table 3 shows
that Mastiff is 3.5 times faster than GBBS on this machine.

5.3 Analysis of Evolution of Components and
Vertex Status

Figure 6 shows the distribution of vertices in different itera-
tions. Note that the number of iterations may slightly differ
as the results are collected from both machines. To separate
the vertices merged to an EXEMPT vertex from those merged
into a ROOT vertex, the status of the 𝑃𝑎𝑟𝑒𝑛𝑡 has been shown
for the MERGED vertices. The number of “Merged (Exempt)”
vertices in this figure shows the size of the giant components.

Figure 6 shows that after the first iterations, most of MERGED
vertices have an EXEMPT 𝑃𝑎𝑟𝑒𝑛𝑡 and are skipped by Mas-
tiff. It also shows that the fraction of vertices in ROOT and
“Merged (Root)” status drops very quickly. As a result, the
percentage of vertices that are processed by Mastiff shrink
dramatically over iterations and as Figure 7 demonstrates,
the execution times of iterations are reduced.

http://networkrepository.com/road-great-britain-osm.php
http://networkrepository.com/road-road-usa.php
http://konect.cc/networks/wikipedia_link_war/
http://konect.cc/networks/livejournal-links/
http://konect.cc/networks/livejournal-groupmemberships/
http://networkrepository.com/soc-twitter-2010.php
networkrepository.com/soc-twitter.php
http://law.di.unimi.it/webdata/webbase-2001/
http://networkrepository.com/soc-twitter-mpi-sws.php
http://networkrepository.com/soc-friendster.php
http://law.di.unimi.it/webdata/sk-2005
http://networkrepository.com/web-cc12-hostgraph.php
http://law.di.unimi.it/webdata/uk-2007-02/
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
http://konect.cc/networks/dimacs10-uk-2007-05/
https://law.di.unimi.it/webdata/clueweb12/
http://law.di.unimi.it/webdata/uk-2014/
http://webdatacommons.org/hyperlinkgraph/2014-04/download.html
https://github.com/ParAlg/gbbs/
https://github.com/IntelligentSoftwareSystems/Galois


ICS ’22, June 28–30, 2022, Virtual Event, USA Koohi Esfahani, Kilpatrick, Vandierendonck

87.5 86.61

49.14

6.07 5.64 4.66

7.55 13.1

50.78

93.86 94.3 95.28 99.94

Iteration

#V
er

tic
es

 (%
)

0

25

50

75

10
0

0 1 2 3 4 5 6

Root Exempt Merged(Exempt) Merged(Root)

(a)WWiki

90.6 96.2

32.6
4.9 1.4 0.0

1.2
2.8

66.9

94.6 98.1 99.5 99.5

Iteration

# 
V

er
tic

es
 (%

)

0

25

50

75

100

0 1 2 3 4 5 6

Root Exempt Merged(Exempt) Merged(Root)

(b) WebCC

88.3 90.8 86.9

27.7
4.2 0.2

0.9 1.5 5.6

64.8
88.3 92.3 92.5

Iteration

# 
V

er
tic

es
 (%

)

0

25

50

75

100

0 1 2 3 4 5 6

Root Exempt Merged(Exempt) Merged(Root)

(c) WDC14
Figure 6. Status distribution of vertices after Mastiff itera-
tions - For the MERGED vertices, the parent status has been
shown in parenthesis.

This confirms that Mastiff has been successful in achieving
its design goal to reduce the work performed in iterations
while avoiding rewriting the graph topology (Section 3.1).
5.4 Execution Breakdown
Figure 6 shows that as the number of iterations are increased,
the EXEMPT component includesmore vertices. Figure 7 shows
the execution breakdown of Mastiff on the Epyc machine.
It depicts the percentage of time passed in the initialization
step (Lines 1-22 of Algorithm 1), followed by the percentage
of time passed in different iterations. Figure 7 shows that
after the first iterations, the execution times of iterations are
reduced. This is the result of growth of the EXEMPT compo-
nent that reduces the number of vertices that are processed
for selecting the lightest edge of each ROOT component.
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Figure 7. Percentage of execution time passed in different
iterations of Mastiff [Epyc] - “Init” is the initialization step:
Lines 1-21 of Algorithm 1.

5.5 Hardware Events
Figure 8a compares the last level cache misses in the execu-
tion of Mastiff in comparison to Borůvka on the SkyLakeX
machine. It shows that Mastiff reduces cache misses by 2.2
times, on average. Figure 8b compares the memory accesses
(load and store instructions) and shows thatMastiff reduces
memory accesses by 1.6 times, on average. The compari-
son of hardware instructions in Figure 8c shows thatMastiff
reduces hardware instructions by 1.4 times, on average.
For graphs with a high number of vertices (such as Web-

Base or graphs larger than UK-Delis), the numbers of mem-
ory accesses and hardware instructions are increased by
Mastiff. That is the result of 6 par_for loops in each iteration
of Mastiff that are performed for all vertices. However, the
actual data required for processing the loop bodies is fetched
only for vertices with specific status; moreover, the fraction
of the vertices with a relevant status decreases over time.
Therefore, the 𝑆𝑡𝑎𝑡𝑢𝑠 array is accessed always but the actual
data is rarely required. In this way, memory operations are
mostly read accesses to the 𝑆𝑡𝑎𝑡𝑢𝑠 array that is prefetched
and also kept in cache. As a result, the total cycles are reduced
by 3.3 times on the SkyLakeX machine.
On the other hand, steps 2, 3, and 5 in Algorithm 1 are

performed on the components (as ROOT vertices) and the
number of memory accesses and hardware instructions in
these steps can be significantly reduced by using a sparse
frontier (worklist) for components. Figure 9 shows that af-
ter 2 iterations less than 5% vertices have ROOT and EXEMPT
statuses.
5.6 Depth of Components’ Trees
In step 4 of Algorithm 1, function compress_path() traverses
all MERGED parents of a vertex until finding the root of the
tree (which is a vertex with ROOT or EXEMPT status) and then
updates the 𝑃𝑎𝑟𝑒𝑛𝑡 of all intermediate vertices.
Figure 10 illustrates the maximum depth of components

in each iteration of the Mastiff algorithm. It shows that the
maximum depth of the trees is less than 20.
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(b) Memory accesses (load and store instructions)
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Figure 8. Hardware Events [SkyLakeX]

While Mastiff does not apply any ranking by ID or size for
selecting the representative of each component, the selection
of the EXEMPT component as the largest component prevents
long depths in trees. It is a result of having a huge num-
ber of inter-component edges in the EXEMPT components
that increases the probability of reaching them from other
components. It is also shown in Figure 10, where the max-
imum depths occur for initial iterations where the EXEMPT
component has not been grown enough (Figure 6).

6 Related Work
6.1 MSF
MSF algorithms are categorized into mainly three types:

1. Borůvka’s algorithm [11], that is explained in Sec-
tion 2.

2. Jarnik’s algorithm [25] (also known as Prim’s algo-
rithm [46]) starts from a vertex and iteratively grows
the tree by selecting the lowest-weight edge between
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statuses
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Figure 10.Maximum depth of components

the vertices of the tree (i.e., the previously selected
vertices) and a non-selected vertex.

3. Kruskal’s algorithm [33] iteratively selects the lowest-
weight edge that connects an endpoint of the previ-
ously selected edges to a not selected vertex. This con-
tinues until all vertices are marked as selected.

A parallel and distributed algorithm for Borůvka’s algo-
rithm is presented in [15] that in each iteration merges ver-
tices that are in the same component and removes self-edges
of the component. This paper introduces the supervertex
algorithm as a new algorithm to accelerate pointer jumping.
Locality of Borůvka’s algorithm has been explored in [17]
and a GPU implementation of Borůvka’s algorithm is pre-
sented in [60] that packs weights of edges and destinations in
the same array. Edge bucketing has been proposed in [18, 63]
to accelerate searching for the lightest edges in Borůvka’s
algorithm.

Edge bucketing has similarities toΔ-stepping [40] in Single-
Source Shortest Paths that processes (relaxes) edges in dif-
ferent steps and only after ensuring the shortest distances
in the previous step have been settled.
Parallel implementation of Prim’s algorithm introduced

in [4] that selects a number of start points and simultane-
ously grows distinct trees. Upon identifying a neighbour in
another tree, the tree stops growing and vertices on the same
tree are merged to a new vertex. This process is continued
until no edges remain. A similar technique has been used
in [44] that merges two components upon finding a conflict.
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Parallelization of the searching for the lightest edge of Prim’s
algorithm has been introduced in [37].
Edge bucketing is used in [48] to reduce the overhead

of Kruskal’s algorithm and to avoid accessing all edges in
each iteration. The opportunity to parallelize searching for
the lightest edge and also merging has been studied in [37].
Helper threads are used in [26] to identify cycles in Kruskal’s
algorithm and to remove the heaviest edges of the cycles.
Distributed memory implementations of MSF have been

studied in [15, 37, 45] and GPU-based ones in [44, 48, 60].
A comprehensive study and analysis of MSF algorithms,

their complexities, and parallelization opportunities has been
presented in [22]. Finding replacements in MSF has been
studied in [3].

Rewriting the neighbour list of vertices has been explored
in some studies [22, 23]. While it is not efficient for Mastiff
to rewrite neighbour lists of all vertices in ROOT components,
further investigation is required to identify if it is useful to
rewrite the neighbour list of high-degree vertices in some
iterations.

6.2 Structure-Aware Graph Algorithms
SDS Sort [21] introduces a parallel sorting algorithm for data
with skewed distribution. SAPCo Sort [32] is an optimized
degree-ordering for real-world graphs.

PowerLyra [14] reduces the communication cost by using
vertex-cut partitioning for low-degree vertices and edge-cut
for high-degree vertices. In this way, PowerLyra ensures that
replicas of low-degree vertices are not increased and pro-
cessing high-degree vertices experience better load balance.
To provide better load balance in using CPU and GPU

integrated devices, FinePar [62] assigns high-degree vertices
to CPU while processing low-degree vertices by GPU.
VEBO [55] introduces a partitioning algorithm that dis-

tributes high-degree vertices on different partitions, while
trying to assign equal number of edges to partitions.
The implications of real-world graphs on SpMV-based

graph processing is studied in [28, 29] by investigating the
connection between different vertex classes of the graphs.
It is also explained how the structure of a power-law graph
provides better Push Locality (in traversing a graph in the
push direction), or Pull Locality (for traversing a graph in
the pull direction).
iHTL [27] is a structure-aware SpMV with optimized lo-

cality in processing power-law graphs. iHTL extracts dense
sub-graphs containing incoming edges to in-hubs and pro-
cesses them in the push direction; while processing other
edges in the pull direction.
Thrifty [30] is a structure-aware label propagation Con-

nected Components algorithm that optimizes work efficiency
by introducing Zero Planting and Zero Convergence tech-
niques to accelerate label propagation and to prevent pro-
cessing all edges of the graph in pull iterations. In this way,
Thrifty processes only a small percentage of edges.

Lotus [31] optimizes locality in Triangle Counting (TC)
by separating hub edges from non-hub edges and dividing
TC into 3 steps. In this way, Lotus (1) provides a compact
presentation for hub edges and optimizes the cache capacity
usage, (2) concentrates random memory accesses in each
step to a small data structure that is easier to be maintained
in cache, and (3) prunes unnecessary searches.

7 Conclusion and Future Work
This paper investigates the formation of components in
Borůvka’s algorithm in processing power-law graphs. Based
on the novel observations, we introduce the MASTIFF al-
gorithm that accelerates MSF by avoiding processing the
largest component in each graph component, and by avoid-
ing topology operations such as merging neighbour lists and
relabeling vertices and edges. The evaluation shows that
Mastiff is 3.4–5.9 times faster than previous works.

The following cases are our suggestions for future work:
• In addition to MSF, writing graph topology is a time-
and memory-consuming step in several graph algo-
rithms like Louvain [6], maximumweighted clique [12],
and graph coloring [59]. It is an open question how to
exploit the structure of graphs for these algorithms to
avoid topology rewriting.

• As explained in Section 5.5, there is an opportunity
to reduce memory accesses by using a sparse data
structure for tracking ROOT and EXEMPT components.

Source Code Availability
Source code repository and further discussions are available
online in https://blogs.qub.ac.uk/GraphProcessing/MASTIFF-
Structure-Aware-Minimum-Spanning-Tree-Forest/ .
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