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Abstract
Triangle Counting (TC) is a basic graph mining problemwith
numerous applications. However, the large size of real-world
graphs has a severe effect on TC performance.

This paper studies the TC algorithm from the perspective
of memory utilization. We investigate the implications of
the skewed degree distribution of real-world graphs on TC
and make novel observations on how memory locality is
negatively affected. Based on this, we introduce the LOTUS
algorithm as a structure-aware TC that optimizes locality.
The evaluation on 14 real-world graphs with up to 162

billion edges and on 3 different processor architectures of up
to 128 cores shows that Lotus is 2.2–5.5× faster than previous
works.

CCS Concepts: • Theory of computation → Graph al-
gorithms analysis; Shared memory algorithms; Mas-
sively parallel algorithms.

Keywords: Graph Algorithms, High Performance Comput-
ing,Memory Locality, Triangle Counting, Real-World Graphs,
Graph Mining, Clique Problem

1 Introduction
Triangle Counting (TC) is one of the fundamental problems
in graph processing which is used in several fields of science,
humanities, and technology [11, 12, 20, 24, 29, 30, 54, 57,
73, 75]. Different algorithms and optimizations have been
proposed in the literature [1, 5, 8, 12, 23, 27, 31, 34, 37, 48, 62].
However, efficient TC is still a challenge for large and fast-
growing real-world graph datasets.
The structure of real-world graphs poses further chal-

lenges to TC. Many real-world graphs derived from social
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Figure 1. Average TC rates

networks, the internet, and the world-wide web show a
skewed or heavy-tailed degree distribution, following apower-
law distribution: a very small fraction of vertices (known
as hubs) are connected to a disproportionately large fraction
of edges of the graph.
In this paper, we study the effects of power-law degree

distribution of the graphs on TC. We identify a number of
shortcomings in state-of-the-art TC algorithms and oppor-
tunities for improvement, in particular: (1) poor memory lo-
cality, especially during traversal of triangles containing non-
hub vertices, (2) (lack of) compactness of the graph topology
representation, and (3) opportunity to prune searches that
cannot uncover triangles.
The key observation behind this work is based on the

skewedness of the degree distribution of graphs, which has
specific consequences for TC: (1) on average, 93.4% of the
triangles include a hub vertex, and (2) edges between hub
vertices shape a network that is, on average, 1809× denser
than the whole graph. These observations lead us to see hubs
as a key to efficient TC.
This paper presents the design of LOTUS, a structure-

aware and locality-optimizing TC algorithm. Lotus improves
TC by distinguishing 4 types of triangles (depending on
whether they include 3, 2, 1 or 0 hubs) and splits TC into
multiple phases, corresponding to the types of triangle. Each
TC phase is designed as a stand-alone TC algorithm, us-
ing bespoke, compact data structures. The algorithms and
data structures are designed such that random memory
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accesses, a key challenge for memory locality in graph pro-
cessing, are targeted towards a small data structure in each
TC phase to utilize hardware caches in the best possible way.

We evaluate Lotus with TC algorithms in frameworks such
as GraphGrind [66], GAP [10], and GBBS [26] on 14 graphs
of up to 162 billion edges and on 3 processor architectures:
Intel SkyLakeX, Intel Haswell, and AMD Epyc with 32-128
cores. Figure 1 summarizes the average TC rates based on
the end-to-end execution time including preprocessing step
for the datasets with fewer than 10 billion edges.

The contributions of this work are:
• Studying the effects of skewed degree distribution of real-
world graph datasets on TC,

• Analysing the relationship between different vertex classes
from the perspective of memory utilization in common
neighbour computation,

• Introducing Lotus, a novel structure-aware TC algorithm
that optimizes locality for skewed degree graphs by sepa-
rating processing hub edges from non-hub edges,

• Introducing Squared Edge Tiling as a graph partitioning
algorithm for optimizing load balance in TC, and

• Evaluating the Lotus algorithm in comparison to previous
works.

This paper is structured as follows: Section 2 explains key
background materials. Section 3 explores opportunities for
improving TC by introducing novel features of power-law
graphs. Section 4 introduces the Lotus algorithm which is
evaluated in Section 5. Section 6 discusses further related
work and avenues for future work are presented in Section 7.

2 Background
2.1 Terminology
An undirected graph 𝐺 = (𝑉 , 𝐸) has a set of vertices 𝑉 , and
a set of edges 𝐸 between these vertices. Edge (𝑣,𝑢) is the
symmetric edge of edge (𝑢, 𝑣), where 𝑢 < 𝑣 .

𝑁𝑣 is the set of neighbours of vertex 𝑣 ,𝑁 <
𝑣 = {𝑢 ∈ 𝑁𝑣 |𝑢 < 𝑣},

and𝑁 >
𝑣 = {𝑢 ∈ 𝑁𝑣 |𝑢 > 𝑣}.We use the CSX (compressed sparse

rows or columns) representation [59].
Vertices are divided into (1) hub and (2) non-hub vertices.

The Lotus algorithm (Section 4.2) specifies how a vertex is
selected as hub. An edge can be in one of 3 forms: (1) hub to
hub edge, (2) hub to non-hub edge, or (3) non-hub to non-hub
edge. A hub edge is an edge with at least one hub endpoint.
A non-hub edge is an edge without any hub as its endpoints.
A triangle is called hub triangle if at least one of its vertices
is a hub vertex.

2.2 TC Algorithms
Three main TC algorithms are summarized in [62]:
• The Node iterator algorithm enumerates each pair of
neighbours of a vertex and checks if they are connected,

• The Edge iterator algorithm searches for common neigh-
bours of two endpoints of each edge, and

Algorithm 1: Forward algorithm
Input: 𝐺 (𝑉 , 𝐸)
Output: Triangles

1 𝐺 ′(𝑉 ′, 𝐸 ′) = reorder_by_degree(𝐺);
2 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 = 0;
3 par_for 𝑣 ∈ 𝑉 ′

4 par_for 𝑢 ∈ 𝑁 <
𝑣

5 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 + = |𝑁 <
𝑣 ∩ 𝑁 <

𝑢 |;
6 return 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠;

• The Forward algorithm sorts vertices by their degrees
in descending order and identifies common neighbours
between a vertex and each of its neighbours.

Algorithm 1 is an improved version of the Forward algo-
rithm introduced in [27] that we use as the baseline algo-
rithm. For each vertex 𝑣 and each 𝑢 ∈ 𝑁 <

𝑣 , 𝑁 <
𝑣 ∩ 𝑁 <

𝑢 speci-
fies the number of triangles including 𝑢 and 𝑣 . By limiting
neighbours to 𝑁 <, a triangle is counted only once and the
execution time is reduced as only half of the edges are pro-
cessed. The intersection is performed using merge join [62],
bitmap lookup [48], hashing [23, 62], or binary search [31].

3 Motivation
This section presents the key observations that underpin the
design of Lotus.

3.1 Low Locality in Processing Non-Hub Vertices
The Forward algorithm (Algorithm 1) uses degree ordering
to accelerate TC. Degree ordering improves load balance
and reduces the number of comparisons occurring in the
intersection operation [5].
For each edge, only one of (𝑢, 𝑣) or (𝑣,𝑢) needs to be

present in the graph as the symmetric edges are redundant
for TC. Degree ordering decides that (𝑣,𝑢) is retained if 𝑣 < 𝑢.
By consequence, only vertices 𝑣 with a smaller ID (𝑣 < 𝑢)
are stored in the neighbour list of a vertex 𝑢. The neighbour
list of a hub thus only contains hubs, and the neighbour list
of a non-hub contains both hub and non-hub neighbours.
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Figure 2. An exam-
ple graph - hubs: 0, 1

This is illustrated in an example
graph (Figure 2) where edges have
the same color as the vertex they
are assigned to by degree ordering.
Edges between vertex 3 and hub ver-
tices 0 and 1 are assigned to vertex
3 and vertex 3 also has an edge to
vertex 2 which is a non-hub.

An immediate consequence of
this organization is that the neighbour lists of hubs (con-
taining hub-to-hub edges) are very frequently accessed. In-
deed, hubs have many neighbours, which by construction
are mostly non-hubs. Each time a non-hub vertex 𝑣 that
is a neighbour of a hub 𝑢 is processed, the neighbour list
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of the hub is accessed (Algorithm 1, Line 5). Frequent ac-
cesses to the hubs’ neighbour lists prompt the processor
cache tomaintain hub neighbour lists in cache. Column
2 of Table 1 shows that these neighbour lists, consisting of
hub-to-hub edges, include 18.1% of the edges of the graph.
The flip-side of this is that there is a low opportunity

for the cache to retain neighbour lists of non-hubs.
While each non-hub neighbour list is accessed less frequently,
together they constitute 81.9% of the edges of power-law
graphs (Table 1, Columns 3 and 5).

3.2 Lack of Compactness of Graph Topology
In graph algorithms like breadth-first search, single-source
shortest-path, and connected components, the main mem-
ory access challenge consists of random memory accesses
to vertex data, which typically consists of 1–64 bits per ver-
tex. Random memory accesses thus target a data set of size
proportional to the number of vertices.
In contrast, the data accessed per vertex consists of the

neighbour lists, i.e., the graph topology, in TC. Thus, ran-
dommemory accesses in TC target a much larger data
set of size proportional to the number of edges. This
shows why achieving memory locality in TC is both more
challenging and more important.

Driven by this comparison, we question whether it is pos-
sible to represent neighbour lists more compactly, without
incurring overheads. The key to this is again in the hubs: the
number of hubs is very few, but the majority of the IDs in
neighbour lists of any vertex refer to hubs. In the power-law
graphs used in this study, 1% of vertices are connected to
72.9% of edges (Table 1, Column 4).

Drawing on the principles of coding and compression the-
ory [35], it is wasteful to represent highly frequently
occurring IDs using the same bitwidth as rarely occur-
ring IDs. The penalty for doing so is inefficient cache uti-
lization. While we reference coding theory to explain the
problem, it is important to design techniques that do
not incur runtime overhead to read graph topology data,
as this is the main operation in TC.

3.3 Fruitless Searches
Out of the many neighbour list intersections performed, a
relatively low number of triangles is found. Conservatively,
all combinations need to be investigated to ensure all trian-
gles are counted. However, there is some knowledge we can
use to identify fruitless searches.
Assume there is a set of vertices 𝑆 ⊂ 𝑉 where we know

ahead of time that 𝑁𝑣∩𝑆 = {}. Let 𝐹 = 𝑁𝑢 ∩𝑆 , then we know
ahead of time that there exists no triangle (𝑓 ,𝑢, 𝑣), where
𝑓 ∈ 𝐹 as 𝑓 cannot be a neighbour of 𝑣 . This follows from
𝑁𝑣 ∩ 𝑁𝑢 = 𝑁𝑣 ∩ (𝑁𝑢 \ 𝐹 ).

The most important 𝑆 , that fits in well with the power-law
graphs, is the set of hubs. As an example, in Figure 2 vertex
8 processes its neighbour 6 and loads its edges {0, 1, 4}. As 8

Dataset
Hub Edges (%) Non-hub to

Non-hub
Edges (%)

Hub
Triangles

(%)

Relative Den-
sity of Hubs
Sub-graph

Fruitless
Searches

(%)
Hub

to Hub
Hub to
Non-hub Total

LJGrp 4.7 76.9 81.5 18.5 99.9 467 78.1
Twtr10 43.5 29.8 73.3 26.7 99.6 4,347 64.0
Twtr 26.3 60.3 86.6 13.4 99.7 2,627 72.2
TwtrMpi 19.1 53.5 72.7 27.4 99.4 1,911 67.8
Frndstr 6.0 25.3 31.3 68.7 47.3 600 36.9
SK 4.9 75.6 80.5 19.5 97.0 490 56.4
WbCc 37.0 35.9 72.8 27.2 99.6 3,695 47.1
UKDls 14.2 63.9 78.2 21.8 98.8 1,423 39.9
UU 12.5 61.9 74.4 25.6 96.2 1,252 31.7
UKDmn 12.8 64.9 77.7 22.3 96.6 1,279 39.1
Average 18.1 54.8 72.9 27.1 93.4 1,809 53.3
Table 1. Topological characteristics of hubs (1% of vertices
with maximum degrees selected as hubs)

is not connected to a hub (0 or 1), it can be inferred that no
triangle exists including vertices 8, 6 and any of the hubs.

In other words, accessing hub edges cannot result in a
triangle during processing non-hub vertices that have
no edges to hubs (𝑁𝑣∩𝐻𝑢𝑏𝑠 = {}). However, hub edges are
frequently accessed in processing these non-hub vertices. We
measuredwhat fraction of accessed edges point to hubswhen
processing these vertices (Table 1, Column 8). On average,
53.3% of memory accesses are performed to hub edges
that can be avoided. This data was collected using merge
join intersection. Deploying binary search intersection [31]
also reduces these memory accesses (Section 6.3).

This shows that if we know that 𝑣 is not connected to a
hub, it is possible to prune the search and the power-law
structure of graphs is helpful to prevent accessing a large
fraction of edges in processing non-hub vertices.

3.4 Highly Dense Hubs Sub-graph
We have already observed that hubs are few and incident to
72.9% of the edges. Interestingly, as each vertex in a triangle
must have two incident edges, these statistics become even
more skewed when considering hubs. Column 6 of Table 1
(“Hub Triangles”) shows the percentage of triangles contain-
ing at least one hub. It shows that, on average, 93.4% of the
triangles contain at least one hub.

This observation is an immediate result from the tight con-
nections between hubs.We define the relative density (RD) of
a sub-graph 𝑆 = (𝑉 ′, 𝐸 ′) where𝑉 ′ ⊂ 𝑉 and 𝐸 ′ = 𝐸∩(𝑉 ′×𝑉 ′),
as 𝑅𝐷𝑆 =

|𝐸′ |/( |𝑉 ′ |2)
|𝐸 |/( |𝑉 |2) . Column 7 of Table 1 reports the 𝑅𝐷𝐻 ,

where H is the set of hubs and shows thathub-to-hub edges
create a dense sub-graph that is 1809 timesmore dense
than the full graph.

These statistics demonstrate that (i) hubs should be central
to the design of a TC algorithm; (ii) the high density of the
hubs sub-graph invites a highly compact data structure to
store this sub-graph.
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4 LOTUS
4.1 Lotus Idea
In order to manage the challenges surrounding hubs, Lotus
distinguishes 4 types of triangles:
• HHH: triangles between 3 hub vertices,
• HHN: triangles between 2 hub and 1 non-hub vertices,
• HNN: triangles between 1 hub and 2 non-hub vertices,
• NNN: triangles between 3 non-hub vertices.
Triangle counting is organized in three steps, each using

a bespoke algorithm and data structure designed to capture
the corresponding characteristics of locality.

4.1.1 CountingHHHandHHNTriangles. To count tri-
angles with at least two hub vertices, the key question is if
two hubs are connected? To check if two hubs are neighbours,
Lotus exploits two features of power-law graphs: (1) hubs
have a dense connection to each other (Section 3.4), and
(2) there is a small number of hubs (Section 3.2).

Lotus represents the adjacency information of hubs in a
dense bit array, with 1 bit per pair of hubs. As there are few
hubs, the bit array can be retained in cache. Using this bit
array, Lotus iterates over all distinct pairs of hub neighbours
of each vertex and identifies triangles if two hubs in a pair
are connected.

4.1.2 CountingHNNTriangles. HNN triangles have two
non-hub vertices that are connected to a hub. Hence, the
most frequently occurring edges, and thus the ones most
frequently queried, are hub edges. As such, Lotus organizes
the search around iterating non-hubs and their non-hub
neighbours, and then querying if they have a common hub
neighbour.

To performHNNTC efficiently, Lotus stores the hub neigh-
bours separately from the non-hub neighbours. Moreover,
based on the observation that hubs are few but frequently
mentioned (Section 3.2), we store the hub neighbours using
fewer bits per ID.

4.1.3 Counting NNN Triangles. In this step, Lotus iden-
tifies common non-hub neighbours between a non-hub ver-
tex and its non-hub neighbours. Lotus avoids loading hub

edges (Section 3.3) and only processes non-hub edges in this
step as it separately stores hub and non-hub edges.

4.2 Lotus Graph Structure
In order to achieve the targets explained in Section 4.1, Lotus
creates a special graph structure that consists of:

• Number of Hubs: Lotus selects the 64K (216) vertices
with the highest degrees as hubs.

• Hub to Hub (H2H) Bit Array: Lotus represents hub-
to-hub edges using this bit array. Since each hub has
edges only to hubs with lower IDs, H2H is a triangular
array (instead of a 2D square array). In this way, for hub
vertices ℎ1 and ℎ2 where ℎ1 > ℎ2 ≥ 0, the bit with index
ℎ1(ℎ1 − 1)/2 + ℎ2 specifies if ℎ1 has an edge to ℎ2.

• Hub Edges (HE) Sub-graph: This sub-graph represents
all hub edges of the graph. It is stored in CSX format.
As Lotus selects 64K hubs, each edge (neighbour ID) in
HE sub-graph is represented in 16 bits. For vertex 𝑣 , HE
represents all hub neighbours ℎ of 𝑣 where ℎ < 𝑣 .

• Non-Hub Edges (NHE) Sub-graph: This sub-graph rep-
resents edges from each vertex 𝑣 to its non-hub vertices
𝑢, where 𝑢 < 𝑣 . This sub-graph is also in CSX format, but
unlike HE, NHE assigns 32 bits memory space per edge.

Figure 3a shows the adjacencymatrix of Lotus. The 4 types
of triangles are illustrated to demonstrate in which range
their endpoints sit. Note that hub-to-hub edges are recorded
twice: once in the HE sub-graph and once in the H2H, which
overlaps HE in the figure.

4.3 Lotus Preprocessing
Lotus creates its graph structure in a preprocessing step
before counting triangles. Algorithm 2 shows how Lotus
creates its graph.

4.3.1 Creating Relabeling Array. Lotus assigns the first
consecutive IDs to hub vertices, therefore it is necessary
to relabel vertices. Line 1 creates the relabeling array. The
create_relabeling_array() function selects the hub vertices
with highest degrees and assigns the first IDs to them.
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Algorithm 2: Lotus Preprocessing
Input: 𝐺 (𝑉 , 𝐸)
Output: LotusGraph

1 𝑅𝐴 = create_relabeling_array(𝐺);
2 ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡 = (1 ≪ 16);
3 TBitArray 𝐻2𝐻 (ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡);
4 Graph < 𝑢𝑠ℎ𝑜𝑟𝑡 > 𝐻𝐸;
5 Graph < 𝑢𝑖𝑛𝑡 > 𝑁𝐻𝐸;
6 par_for 𝑣𝑜𝑙𝑑 ∈ 𝑉

7 𝑣𝑛𝑒𝑤 = 𝑅𝐴[𝑣𝑜𝑙𝑑 ];
8 Array < 𝑢𝑠ℎ𝑜𝑟𝑡 > ℎ𝑒;
9 Array < 𝑢𝑖𝑛𝑡 > 𝑛ℎ𝑒;

10 for 𝑢𝑜𝑙𝑑 ∈ 𝑁𝑣𝑜𝑙𝑑 do
11 if 𝑢𝑜𝑙𝑑 == 𝑣𝑜𝑙𝑑 then

/* self-edge */

12 continue;
13 𝑢𝑛𝑒𝑤 = 𝑅𝐴[𝑢𝑜𝑙𝑑 ];
14 if 𝑢𝑛𝑒𝑤 > 𝑣𝑛𝑒𝑤 then

/* symmetric edge */

15 continue;
16 if 𝑢𝑛𝑒𝑤 < ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡 then

/* hub neighbour */

17 ℎ𝑒.push(𝑢𝑛𝑒𝑤);
18 if 𝑣𝑛𝑒𝑤 < ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡 then

/* hub neighbour of a hub */

19 𝐻2𝐻.set(𝑣𝑛𝑒𝑤, 𝑢𝑛𝑒𝑤);
20 else

/* non-hub neighbour */

21 𝑛ℎ𝑒.push(𝑢𝑛𝑒𝑤);
22 𝐻𝐸.setEdges(𝑣𝑛𝑒𝑤, ℎ𝑒);
23 𝑁𝐻𝐸.setEdges(𝑣𝑛𝑒𝑤, 𝑛ℎ𝑒);
24 return (ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡, 𝐻2𝐻, 𝐻𝐸, 𝑁𝐻𝐸);

In addition to hub vertices, there are a number of high-
degree vertices. If they are assigned large IDs, the num-
ber of comparisons when processing NNN triangles is in-
creased (Section 3). So, Lotus assigns the first consecutive
IDs to 10% of vertices with the highest degrees instead of
only 64K ones.

The remaining IDs are assigned to non-hub vertices in the
same order as the main graph. In this way, Lotus prevents
destroying the initial locality of graphs, which is a known
artefact from degree ordering [44, 68, 72].
𝑐𝑟𝑒𝑎𝑡𝑒_𝑟𝑒𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔_𝑎𝑟𝑟𝑎𝑦 () returns an array that is indexed

by the original ID of a vertex and the value at that index spec-
ifies the new ID of that vertex.

4.3.2 Creating Bit Array and Sub-graphs. Line 3 initial-
izes the H2H triangular bit array storing hub-to-hub edges
by allocating memory of ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡 ∗ (ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡 − 1)/2
bits size and setting all bits to zero.

Lines 4 and 5 initialize sub-graphs for HE and NHEwhere
the size of each edge is 16 and 32 bits, respectively.
Lines 6-23 process each vertex in the graph. Lines 8-9

initialize the he and nhe arrays to contain hub and non-hub
neighbours of a vertex, respectively.
Each neighbour of a vertex is considered in Lines 11-21

and self-edges and symmetric edges are ignored (Lines 11-
15). Similar to the baseline algorithm (Section 2.2), Lotus
does not process symmetric edges and limits neighbours of
a vertex to the ones that have lower IDs. This restricts the
neighbour list of vertex 𝑣𝑛𝑒𝑤 to 𝑁 <

𝑣𝑛𝑒𝑤
.

The neighbour is assigned to he (Line 17), if it is a hub
neighbour. In this case, the H2H bit array is set if the vertex
and its neighbour are both hubs (Line 19). If the neighbour
is a non-hub vertex, it is added to nhe (Line 21).
After processing all edges of a vertex, Lines 22-23 call

𝑠𝑒𝑡𝐸𝑑𝑔𝑒𝑠 () method that sorts the neighbour lists he and nhe
and assigns them to the relevant vertex (𝑣𝑛𝑒𝑤) of HE and
NHE sub-graphs, respectively.
In Lines 5 and 9, 32-bit vertex ID is sufficient for public

data sets as they have fewer than 232 vertices. However, for
datasets with greater number of vertices, 64-bit IDs can be
used without losing the benefits of Lotus.

4.4 Counting Triangles in Lotus
Algorithm 3 shows how Lotus counts triangles:

4.4.1 HHH and HHN. Lotus creates all distinct pairs be-
tween hub neighbours of a vertex (Lines 3-4) and if two hubs
of a pair are connected (Line 5), a triangle has been found.
Note that the bit array is laid in “ℎ1-major” format, ensuring
that bits for subsequent ℎ2 values are placed in consecu-
tive locations. Moreover, as ℎ1 changes in the outer loop on
Line 3, the calculation ℎ1(ℎ1 − 1)/2 is reused as ℎ2 changes
in the inner loop in Line 4.
Figure 3b shows counting HHH and HHN triangles for

vertex 𝑣 with hub neighbours ℎ2 and ℎ1. The existence of
triangle (ℎ2, ℎ1, 𝑣) is validated by checking if ℎ2 has an edge
to ℎ1 in the H2H sub-graph.

4.4.2 HNN. Lotus finds common hub neighbours between
each non-hub vertex and its non-hub neighbours. Line 7
iterates over all vertices. For each non-hub vertex 𝑣 , its non-
hub neighbours such as 𝑢 are considered (Line 8), and each
common hub neighbour of 𝑢 and 𝑣 forms a triangle (Line 9).

In Figure 3c, for vertex 𝑣 and its non-hub neighbours such
as 𝑢 (that are in NHE sub-graph), hub neighbours of 𝑢 and 𝑣
(that are in HE sub-graph) are matched.

4.4.3 NNN. Lines 10–12 are similar to the Forward algo-
rithm to find NNN triangles in the NHE. Lotus uses merge
join for intersection as the neighbour lists of non-hub ver-
tices are relatively short. This prevents overheads imposed
by other solutions (Section 6.3).
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Algorithm 3: Counting Triangles in Lotus
Input: 𝐿𝑜𝑡𝑢𝑠𝐺𝑟𝑎𝑝ℎ 𝐿(ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡, 𝐻2𝐻, 𝐻𝐸, 𝑁𝐻𝐸)
Output: Triangles

1 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 = 0;
/* Counting HHH and HHN triangles */

2 par_for 𝑣 ∈ 𝐻𝐸.𝑉

3 par_for ℎ1 ∈ 𝐻𝐸.𝑁𝑣

4 for ℎ2 ∈ {ℎ ∈ 𝐻𝐸.𝑁𝑣 | ℎ < ℎ1} do
5 if 𝐻2𝐻.𝑖𝑠𝑆𝑒𝑡 (ℎ1, ℎ2) then
6 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 + +;
/* Counting HNN triangles */

7 par_for 𝑣 ∈ 𝑁𝐻𝐸.𝑉

8 par_for 𝑢 ∈ 𝑁𝐻𝐸.𝑁𝑣

9 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠+ = |𝐻𝐸.𝑁𝑣 ∩ 𝐻𝐸.𝑁𝑢 |;
/* Counting NNN triangles */

10 par_for 𝑣 ∈ 𝑁𝐻𝐸.𝑉

11 par_for 𝑢 ∈ 𝑁𝐻𝐸.𝑁𝑣

12 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠+ = |𝑁𝐻𝐸.𝑁𝑣 ∩ 𝑁𝐻𝐸.𝑁𝑢 |;
13 return 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠;

In Figure 3d, for vertex 𝑣 and for its non-hub neighbours
such as 𝑢 (that are in NHE), non-hub neighbours of 𝑢 and 𝑣
(that are in NHE) are matched.

4.5 How Does Lotus Improve Locality?
In counting HHH and HHN triangles, Lotus reads hub neigh-
bours of a vertex in sequential accesses and iterates over
all pairs of hub neighbours (Lines 3-4 of Algorithm 3). In
other words, Lotus accesses the neighbour list of a ver-
tex only for processing that vertex. The neighbour lists
are streamed through cache. Sequentially streamed accesses
are prefetched by hardware in timely fashion. Only the H2H
bit array is used (Line 5) for random accesses to topology
data. By concentrating random accesses on the H2H bit array,
the range of data accessed randomly is significantly re-
duced.

This increases the frequency of cache hits. Table 7 shows
that graph datasets in this study have edges with topology
size of 0.42 - 12.30 Gigabytes in the CSX format, but the
H2H size is less than 256Megabytes. Moreover,H2H stores
edges in an addressable format that facilitates efficient
checking if two hubs are connected in constant time, and
just a few instructions. Section 5.7 shows that 64 Megabytes
cache space suffices to satisfy 90% of accesses to H2H.
In Algorithm 3, Lotus has two similar nested loops for

counting HNN and NNN triangles in Lines 7-8 and 10-11.
These loops iterate over the same domain (the neighbour lists
of NHE). Lotus keeps the body of these loops (intersections
at Lines 9 and 12) separate (as opposed to fusing the loops).
Two contradictory effects need to be traded-off:

• Random memory accesses are made to 𝐻𝐸.𝑁𝑢 (Line 9)
and 𝑁𝐻𝐸.𝑁𝑢 (Line 12). Reuse of this data before eviction

TC Step Random Accesses Edge Size Total Size of Edges
HHH & HHN 𝐻2𝐻 1 bit 256 Megabytes

HNN 𝐻𝐸.𝐸 16 bits |𝐻𝐸.𝐸 | ∗ 2 Bytes
NNN 𝑁𝐻𝐸.𝐸 32 bits |𝑁𝐻𝐸.𝐸 | ∗ 4 Bytes
Table 2. Random memory accesses in Lotus TC

from the cache is possible. If we were to fuse the loops
in Lines 7–12, then reuse of this data would become less
likely, as the total volume of randomly accessed data, and
thus the working set size, will increase.

• The cost of traversing the NHE sub-graph itself (fetching
𝑁𝐻𝐸.𝑉 and 𝑁𝐻𝐸.𝑁𝑣) is low as this data is streamed in
sequentially. The NHE topology is relatively small as it
contains only 27% of edges on average (Table 1, Column 7).
Lotus improves locality by dividing TC into three

steps and in each step dedicates cache to a smaller spe-
cial data structure that is most frequently needed. Ta-
ble 2 summarizes which data structure is accessed in random
order. Section 5.3 shows that Lotus reduces last level cache
misses by 2.1× and DTLB misses by 34.6×, on average.

4.6 Graph Partitioning and Load Balancing in Lotus
Edge Tiling [56] improves load balance by splitting the edge
list of high-degree vertices into smaller parts and scheduling
these on different concurrent threads.

In Line 3 of Algorithm 3, the amount of work each neigh-
bour (ℎ1) performs depends on its offset from the first neigh-
bour. As a consequence, we cannot divide work between
threads by assigning the same number of neighbours to each
thread.

In order to parallelize the loop in Line 3 of Algorithm 3, Lo-
tus introduces Squared Edge Tiling that creates partitions
with equal work complexity for neighbours of a vertex.

For vertex 𝑣 with |𝑁𝑣 | neighbours, the total work is |𝑁𝑣 | ∗
(|𝑁𝑣 | − 1)/2 and if the total work performed from the first
neighbour until the i-th neighbour is 𝑓 fraction of the total
work, where 0 < 𝑓 < 1, then:

𝑖 ∗ (𝑖 − 1)/2 = 𝑓 |𝑁𝑣 | ( |𝑁𝑣 | − 1)/2 ,

or
𝑖 = ( 1 +

√
𝑓 (2|𝑁𝑣 | − 1)2 + 1 − 𝑓 )/2 .

Since |𝑁𝑣 | ≫ 𝑓 ,

𝑖

|𝑁𝑣 |
≈

1 +
√
𝑓 (2|𝑁𝑣 | − 1)2
2|𝑁𝑣 |

≈
√
𝑓 ,

or
𝑖 ≈ |𝑁𝑣 | ∗

√
𝑓 .

Using this formula, we can identify the boundaries to
partition the loop by changing 𝑓 . As an example, for parti-
tioning total work for a vertex with 100 neighbours into 5
partitions, the partition borders will be 0, 100 ∗

√
0.2 = 45,

100 ∗
√
0.4 = 63, 100 ∗

√
0.6 = 77,100 ∗

√
0.8 = 89, and 100.

While the number of triangles may vary per tile, the ef-
fort per tile is balanced. Lotus performs squared edge tiling
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SkyLakeX Haswell Epyc
CPU Model Intel Xeon Gold 6130 Intel Xeon E5-4627 AMD Epyc 7702
CPU Frequency 2.10 GHz 2.6 GHz 2 GHz
Sockets 2 4 2
NUMA Nodes 2 4 8
Total CPU Cores 32 40 128
Hyperthreading No No No
L1 Cache 32 KB / 1 core 32 KB / 1 core 32 KB / 1 core
L2 Cache 1 MB / 1 core 256 KB / 1 core 512 KB / 1 core
L3 Cache 22 MB / 16 cores 25.6 MB / 10 cores 16 MB / 4 cores
Total L3 Cache 44 MB 102.4 MB 512 MB
Total Memory 768 GB 1,024 GB 2,048 GB

Table 3. Machines

Dataset Name Type Source |V| (M) |E| (B) |Triangles|
LJGrp LiveJournal SN KN 7 0.22 141,388,608
Twtr10 Twitter 2010 SN NR 21 0.53 17,295,646,010
Twtr Twitter SN NR 28 0.96 13,734,746,881
TwtrMpi Twitter-MPI SN NR 41 2.41 34,824,916,864
Frndstr Friendster SN NR 65 3.61 4,173,724,142
SK SK-Domain WG LWA 50 3.64 84,907,040,872
WbCc Web-CC12 WG NR 89 3.87 417,026,090,229
UKDls UK-Delis WG LWA 110 6.92 663,713,224,204
UU UK-Union WG LWA 133 9.36 453,830,915,490
UKDmn UK-Domain WG KN 105 6.60 286,701,284,103
MClst MetaClust BG HM 282 42.8 5,588,867,541,009
ClWb12 ClueWeb12 WG LWA 978 74.7 1,995,295,290,765
WDC14 WDC 2014 WG WDC 1,724 124 4,587,563,913,535
EU15 EU Domains WG LWA 1,071 161 15,338,196,409,949

Table 4. Datasets

Dataset SkyLakeX Haswell Epyc
BBTC GGrnd GAP GBBS Lotus BBTC GGrnd GAP GBBS Lotus BBTC GGrnd GAP GBBS Lotus

LJGrp 4.1 4.7 6.4 2.5 1.0 8.6 3.9 6.8 1.4 1.1 2.4 2.5 6.6 0.5 0.8
Twtr10 62.4 74.2 32.7 32.8 6.7 15.9 50.0 28.9 25.3 6.7 31.5 21.6 45.0 9.0 4.1
Twtr 98.0 77.0 32.1 32.1 10.0 122.9 56.3 28.5 25.1 9.8 81.3 25.8 20.3 9.4 6.1
TwtrMpi 377.7 282.2 80.5 90.5 36.8 234.5 129.2 67.6 72.4 33.7 333.3 67.2 38.8 25.9 18.2
Frndstr 129.5 129.1 70.5 76.4 56.7 176.8 111.7 69.5 67.5 54.6 59.9 33.3 27.4 24.5 23.8
SK 246.3 56.5 28.8 19.5 7.3 871.5 37.5 29.0 8.2 6.5 246.5 19.5 21.0 3.3 2.9
WbCc 602.0 649.0 121.1 233.8 64.2 362.2 279.0 118.9 170.1 57.9 534.5 134.1 92.1 51.7 21.9
UKDls - 383.3 67.7 80.0 32.7 - 141.5 68.3 48.7 26.1 - 58.6 89.8 38.6 12.2
UU - 134.9 61.6 74.4 29.3 - 86.9 56.8 38.6 22.1 - 43.8 36.0 15.0 9.5
UKDmn - 123.9 50.3 53.6 19.9 - 58.0 48.5 24.9 15.9 - 32.6 32.4 10.3 7.2
Lotus Avg.
Speedup 11.3× 7.4× 3.0× 2.8× 24.6× 4.6× 3.1× 2.0× 22.1× 4.5× 5.3× 1.7×

Table 5. End to end TC execution times in seconds - GGrnd: GraphGrind - Failed attempts are shown by dash - Avg. Speedup
is arithmetic mean over Lotus speedup for each dataset

during the preprocessing step. Values of
√
𝑓 are fixed for

different vertices as 𝑓 indicates the fraction of work and for
dividing work into 𝑝 partitions, 𝑓 = 𝑘

𝑝
, where 0 < 𝑘 < 𝑝 . So,

values of
√
𝑓 are pre-calculated and reused in calculating the

partition boundaries of different high-degree vertices.
Section 5.8 shows that squared edge tiling provides 2.7×

speedup in processing HHH and HHN triangles.

5 Evaluation
5.1 Experimental Setup
5.1.1 Machines. We present experiments on 3 machines
with different processor architectures, listed in Table 3. The
machines use CentOS 7.

5.1.2 Datasets. Table 4 shows the datasets and their sources:
“Konect” (KN) [15, 46, 55], “NetworkRepository” (NR) [18, 21,
22, 58, 64], “Laboratory for Web Algorithmics” (LWA) [15–
18, 47], “HipMCL” (HM) [9, 65], and “Web Data Commons”
(WDC) [49, 52, 53]. Datasets types are Social Network (SN),
Web Graph (WG), or Bio Graph (BG). Numbers of edges are
in billions and numbers of vertices are in millions, counted
after removing zero degree vertices. Graphs are represented
in Compressed Sparse Row/Column [59] with |𝑉 | + 1 index

Dataset Epyc
GBBS Lotus

MClst 1,415.2 784.5
ClWb12 81.7 29.9
WDC14 170.1 85.7
EU15 449.3 256.9
Lotus Avg. Speedup 2.1×

Table 6. End to end TC execution times in seconds

values of 8 bytes per index value and |𝐸 | neighbour IDs of 4
bytes each. Lotus uses 2 bytes for neighbour IDs of HE.

5.1.3 Lotus. We implemented Lotus in the C language us-
ing the pthread, libnuma, and papi [70] libraries. We use
the interleaved NUMA memory policy and to have a better
load balance[61], we apply work-stealing for parallel pro-
cessing of graph partitions as described in Section 4.6. We
use the master-worker model for managing parallel threads
and futex syscall for thread synchronization. We compiled
the source code using the gcc-9.2 compiler with -O3 flag.

5.1.4 Frameworks and TC algorithms. We use the fol-
lowing algorithms/implementations for evaluating Lotus:

http://konect.cc/networks/livejournal-groupmemberships/
http://networkrepository.com/soc-twitter-2010.php
networkrepository.com/soc-twitter.php
http://networkrepository.com/soc-twitter-mpi-sws.php
http://networkrepository.com/soc-friendster.php
http://law.di.unimi.it/webdata/sk-2005
http://networkrepository.com/web-cc12-hostgraph.php
http://law.di.unimi.it/webdata/uk-2007-02/
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
http://konect.cc/networks/dimacs10-uk-2007-05/
https://portal.nersc.gov/project/m1982/HipMCL/Metaclust/
https://law.di.unimi.it/webdata/clueweb12/
http://webdatacommons.org/hyperlinkgraph/2014-04/download.html
https://law.di.unimi.it/webdata/eu-2015/
http://konect.cc
http://networkrepository.co
http://law.di.unimi.it
https://bitbucket.org/azadcse/hipmcl/wiki/Home
http://webdatacommons.org/hyperlinkgraph/
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(a) Last level cache misses
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(b) DTLB misses (Log scale vertical axis)
Figure 4. Comparison of last level cache misses and DTLB misses [SkyLakeX]
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(a) Memory accesses (load & store instructions)
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(b) Hardware instructions
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(c) Branch mis-predictions
Figure 5. Comparison of hardware events [SkyLakeX]

1. BBTC [76] (commit 88fe6bc) that improves load balanc-
ing in TC through better partitioning.

2. Edge iterator in GraphGrind [66, 67] (commit 5099761).
3. Forward algorithm implementation in GAP [10] (commit
6ac1afd), as a study of graph frameworks [7] shows TC
performance of other graph processing frameworks that
do not use vectorization, are close to GAP (±10%) .

4. TC of GBBS [26] (commit 38964eb) that improves [63] by
parallelizing the intersection in the Forward algorithm.
All algorithms use degree ordering to accelerate TC and

we report end-to-end execution time.

5.2 Comparison to Previous Works
Tables 5 compares Lotus execution time with other TC algo-
rithms for graphs smaller than 10 billion edges.
This table shows that the speedup obtained by Lotus on

the Epyc architecture with 128 cores is less than on the other
architectures. This is due to the total on-chip cache size. The
Epyc system has two sockets with 512MB total L3 cache,
which is 12 times larger than the L3 cache on the SkyLakeX
machine. This large L3 cache captures a significantly higher
fraction of memory accesses, and poses lesser challenges
relating to memory locality. As a result, speedup obtained
by Lotus is less, due to the larger cache size.

Table 6 shows the results of Lotus in comparison to GBBS
on the Epyc machine and for graphs greater than 10 billions
edges. This shows that Lotus delivers better speedups for
larger graphs.

On average, Lotus is 19.3 times faster than BBTC, 5.5
times faster than GraphGrind, 3.8 times faster than
GAP, and 2.2 times faster than GBBS.

5.3 Has Lotus Improved Locality?
In Section 4.5, we explained how Lotus improves locality.
To evaluate the locality effects of Lotus, we compare the
last level cache misses and DTLB misses of Lotus and For-
ward algorithms on the SkyLakeX machine in Figure 4a, and
Figure 4b. Lotus reduces last level cache misses by up
to 4.0× and on average by 2.1×. DTLB misses are also
reduced by up to 56× and on average by 34.6×.

Besides improving locality, Lotus is also a more effi-
cient algorithm throughout. Figure 5 compares hardware
events for execution of Lotus and Forward algorithms. It
shows that, on average, Lotus reduces memory accesses
(load and store instructions) by 1.5×, hardware instruc-
tions by 1.7×, and branch mis-predictions by 2.4×.

5.4 Execution Breakdown
Figure 6 displays the breakdown of Lotus execution time
and shows time passed in (1) preprocessing, (2) counting
HHH and HHN triangles, (3) counting HNN triangles, and
(4) counting non-hub triangles.

It shows that, on average, 19.4% of the total execution
time is passed in preprocessing. Moreover, on average,
40.4% of the triangle counting time is passed in count-
ing non-hub triangles.

https://github.com/GT-TDAlab/bbTC/
https://github.com/Jaiwen/GraphGrind
https://github.com/sbeamer/GAPbs
https://github.com/ParAlg/gbbs/
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(b) Haswell
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Figure 6. Lotus execution breakdown (numbers on each bar are in seconds)
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Figure 7. Contribution of triangles
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Figure 8. Percentage of edges in HE and NHE sub-graphs

Figure 7 compares the number of hub and non-hub trian-
gles counted by Lotus. It shows that, on average, 68.9% of
the triangles are counted as hub triangles in Lotus and
31.1% as non-hub triangles.
Figure 8 compares the number of edges in HE and NHE

sub-graphs. It shows that, on average, Lotus processes
50.1% of edges as hub edges. The number of triangles and
edges are different from Table 1 as 1% of vertices have been
selected there as hubs.

5.5 Less Power-Law Graphs
Figures 8 and 7 show that less power-law graphsmay not ben-
efit fromLotus as other datasets. For example, the Friendster
dataset has a relatively low skewness and the highest degree
is 5K. However, Lotus selects a constant number of hubs
(64K). By consequence, only 7.6% of the edges connect to
these hubs and Lotus spends most of the TC time in counting
non-hub triangles (Figure 6).
In general, less power-law graphs can be categorized in

two categories:

1. Social networks with a great number of low-degree
hubs where the tight connection between high-degree
vertices [44] allows improving performance by recur-
sively applying Lotus and splitting the NHE sub-graph
further in new H2H, HE and NHE components, similar to
how iHTL extracts dense flipped blocks [42].

2. Graphs that have a very small number of very high-
degree hubs, where the Forward algorithm is effective
even without degree ordering. In processing low-degree
vertices of these graphs, two types of memory accesses
are performed:
(i) Accesses to neighbour list of hub vertices that are
easily maintained in the cache as hubs are rare but are
accessed frequently (since they are neighbours to a great
percentage of vertices), and
(ii) Accesses to neighbour list of low-degree neighbours
that a good spatial locality (which usually exists in graphs
before degree reordering, especially in LWA graphs as a
result of applying Layered Label Propagation [17]) results
mostly in cache hits (since spatial locality assigns con-
secutive IDs to neighbours and necessitates consecutive
processing of low-degree neighbours).
For these graphs, it is necessary to check the degree dis-
tribution of the graph at the start of TC and to apply the
Forward or edge-iterator algorithms if the graph is not
skewed enough. GAP [10] uses the average degree of the
graph and a sampling mechanism to compare the average
and median degree of vertices.

5.6 Topology Data Size
Table 7 compares size of topology data in CSX format and
Lotus. Since the Forward algorithm (Algorithm 1) uses only
half of the edges, we have calculated sizes of CSX edges and
CSX without symmetric edges.

Lotus affects the size of topology data in 3 ways:

• The HE and NHE sub-graphs require an index array each,
adding 8( |𝑉 | + 1) Bytes.

• Adding the H2H bit array, of fixed size (256 Megabytes).
• Reducing the size of hub IDs, which saves 2 bytes per
edge in the HE sub-graph.
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Dataset CSX Edges (GB) CSX (GB) Lotus (GB) Growth (%)
LJGrp 0.4 0.5 0.6 28.8
Twtr10 1.0 1.1 1.3 10.4
Twtr 1.8 2.0 1.8 -8.9
TwtrMpi 4.5 4.8 4.3 -10.8
Frndstr 6.7 7.2 7.7 6.7
SK 6.8 7.2 5.6 -21.6
WbCc 7.2 7.9 7.3 -6.8
UKDls 12.9 13.7 12.1 -11.9
UU 17.4 18.4 15.7 -14.5
UKDmn 12.3 13.1 11.5 -12.0

Table 7. Size of topology data (Gigabytes)

Dataset H2H Density (%) H2H Zero Cachelines (%)
LJGrp 0.20 62.51
Twtr10 2.83 5.72
Twtr 2.05 8.60
TwtrMpi 2.73 9.89
Frndstr 0.29 36.94
SK 1.04 91.74
WbCc 15.26 74.60
UKDls 2.56 93.31
UU 0.17 91.45
UKDmn 0.15 95.15

Table 8. Lotus H2H bit array characteristics
For graph datasets like SK-Domain where Lotus collects a

greater number of edges as hub edges, the topology size is
reduced more as HE size is reduced.
Table 7 shows that, on average, Lotus reduces size of

topology data by 4.1%. Independently of reducing size, only
a subset of the topology data is accessed in each phase, re-
sulting in smaller working sets.

5.7 H2H Bit Array
H2H is a dense triangular adjacency array that lists edges be-
tween a hub and its hub neighbours with lower IDs. The first
column of Table 8 shows that the density of H2H (fraction
of non-zero bits) is between 0.2% and 15.3%.
We also measured how many 64-byte aligned blocks of

H2H contain 512 zero bits (Table 8, column 3). In web graphs,
75–95% of H2H blocks contain no edges. Edges are thus
tightly packed in cache blocks, which implies that hubs
in web graphs are mostly connected to a number of
hubs. In contrast, social networks exhibit a different behav-
ior where 5–62% of the blocks are zero that shows edges are
thus more dispersed throughout H2H.
To have a better understanding of how H2H is placed in

cache, we measure how many accesses to H2H are satisfied
by selecting the most frequently accessed cachelines. To this
end, we sort cachelines based on how frequently they are
accessed and we calculate the partial sum of their accesses.
Figure 9 shows that by storing one million cachelines of

H2H in cache, more than 90% of accesses to H2H are satisfied.
In other words, 64 Megabytes of cache space suffices to
satisfy 90% of accesses to H2H.
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Figure 9. Percentage of accumulative memory accesses to
most frequently accessed cachelines of H2H (M: Million)

Dataset Edge Balanced (%) Squared Edge Tiling (%)
Twtr10 32.1 1.0
TwtrMpi 32.6 0.7
SK 13.6 3.1
WbCc 83.3 1.3
UKDls 41.8 3.3

Table 9. Average idle time in percent of total execution time
[SkyLakeX]
This shows that 90% of (ℎ1, ℎ2) pairs produced in Line 5

of Algorithm 3 access only 25% of H2H cachelines. In other
word, accesses to theH2H sub-graph benefit from a high
level of locality.
While using a hash table can be seen as an option for

implementing H2H, Figure 9 shows that the high level of
locality in memory accesses to H2H makes it suboptimal to
use a hash table for H2H. A hashing mechanism imposes
more instruction count per memory access, a higher memory
footprint, and a higher preprocessing time.

5.8 Squared Edge Tiling
In Section 4.6, we introduced the squared edge tiling par-
titioning policy to provide better load balance in process-
ing HHH and HHN triangles in Lotus algorithm. Lotus ap-
plies squared edge tiling for vertices with degree greater
than 512 and divides the total work of each vertex between
𝑝 = 2 ∗ #𝑡ℎ𝑟𝑒𝑎𝑑𝑠 partitions.

Table 9 shows the average idle time of threads in the first
step of Lotus for two partitioning policies: edge balanced
partitioning [67, 79] and squared edge tiling, when running
on the SkyLakeX machine. Edge balanced divides edges into
256 ∗ #𝑡ℎ𝑟𝑒𝑎𝑑𝑠 partitions. On average, squared edge tiling
provides 2.7× speedup in processing HHH and HHN
triangles.

6 Related Work
6.1 TC History
Itai and Rodeh [37, 38] use rooted spanning tree for TC.
AYZ algorithm [1, 2] provides better computation complex-
ity (O( |𝐸 |1.41)) in counting triangles of sparse graphs. It uses



LOTUS: Locality Optimizing Triangle Counting PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

matrix multiplication for triangles formed by high-degree
vertices and for triangles made by at least one low-degree ver-
tex, AYZ algorithm acts like the node iterator algorithm (Sec-
tion 2.2) and finds the directed paths of length 2 and checks
if their endpoints are connected by an edge.
In addition to the 3 algorithms explained in Section 2.2,

Schank and Wagner [62] present 3 improvements:

• Node-iterator-core algorithm prioritizes verticeswith smaller
degree and removes the vertex after processing,

• Edge-iterator-hashed algorithm uses a hash container to
identify the common neighbours of the endpoints of each
node, and

• Forward-hashed algorithm uses a hash container for find-
ing common neighbours.

Latapy [48] presents the new-vertex-listing algorithm to
improve the node iterator algorithm for high-degree vertices.
For each vertex, it iterates over all its neighbours and finds
the common neighbours using a bitmap. Based on this, Lat-
apy presents the new-listing as an improvement to the AYZ
algorithm.

Lotus makes several benefits from these algorithms:

• Similar to AYZ and new-listing, Lotus differentiates be-
tween hub and non-hub vertices, however, Lotus counts
a triangle as hub triangle if it has at least one hub vertex,
as the main target of Lotus is to prevent accessing hub
edges when it is not required.

• Lotus uses a bitmap array like the new-vertex-listing algo-
rithm does. However, Lotus does not use it for presenting
edges of only a vertex, but for all edges between hubs.

• Lotus has also similarities with node-iterator-core algo-
rithm as Lotus (1) counts triangles of hubs, (2) removes
hubs and their edges from the graph (as they are not
present in the NHE sub-graph), and (3) counts triangles
between non-hub vertices in the NHE sub-graph.

6.2 Approximate and Streaming TC
Approximate and streaming TC has also been studied in the
literature such as [11, 19, 39, 63, 71].
The Lotus algorithm can be used to accelerate counting

hub triangles of a streaming graph and also to improve its
precision. We know hubs create a large percentage of total
triangles (Sections 3.4 and 5.4) and therefore in a streaming
context, Lotus stores the H2H bit array in the memory and
accelerates processing of hub edges that are streamed in.

6.3 Improvements to TC and Forward Algorithm
Using hash maps for accelerating neighbour matching has
been studied in some works such as [48, 63]. In this con-
text, using binary search has been proposed in [31] and [33]
deploys branch-free binary search [40, 41]. [34] decides be-
tween merge-based search and binary search by considering
degree of vertices.

[27] improves TC by removing vertices with degree 1 (that
cannot shape a triangle) from the graph and by ordering
vertices of the same degree based on their connection to hub
vertices. [32] reduces branch misses by using radix binning.
Fast (but with more memory complexity) common neighbour
counting through iterating over all wedges is studied in [3].
TC has been one of the problems pursued by the Graph
Challenge and [60] surveys a number of TC studies.

6.4 Distributed and GPU-based TC
Distributed TC has been considered in studies such as [5, 6,
77], and GPU-based TC in [14, 25, 31, 33, 34, 76]. Patric [5]
presents different types of partitioning for distributed TC and
also a dynamic load balancing mechanism [6]. [76] studies
block-based partitioning in TC. An evaluation of set inter-
section techniques has been studied in [13].

6.5 Locality Optimizing and Structure-Aware
Algorithms

SDS Sort [28] introduces a parallel sorting algorithm for data
with skewed distribution.

Graph relabeling algorithms such as Rabbit-Order [4],
GOrder [74], SlashBurn [50], and CN-Order [51] optimize lo-
cality in SpMV-based graph processing. [44] analyzes the ef-
fects of reordering algorithms on different real-world graphs
by investigating the connection between different vertex
classes of the graphs. It is also explained how the struc-
ture of a power-law graph provides better Push Locality (in
traversing a graph in the push direction), or Pull Locality (for
traversing a graph in the pull direction).

While graph reordering algorithms provide better locality
for non-hub vertices, they cannot improve locality of hub
vertices in a pull traversal as much as other vertices [43].
Hubs have a great number of neighbours and consecutive
processing of these neighbours reduces the opportunity for
reusing loaded vertex data in cache.
iHTL [42] provides temporal locality in processing hub

vertices and increases the Effective Cache Size[44] in SpMV-
based graph processing algorithms by extracting dense sub-
graphs containing incoming edges to in-hubs and processing
them in the push direction; while processing other edges in
the pull direction. In this way, memory accesses for process-
ing in-hubs, that have a few common destinations, are hit in
cache and the destructive effect of processing in-hubs in the
pull direction is prohibited.

Thrifty Label Propagation [45] optimizesmemory accesses
in identifying Connected Components (CC) of power-law
graphs. Thrifty introduces Zero Planting and Zero Conver-
gence techniques to accelerate label propagation and to pre-
vent processing all edges of the graph in pull iterations. In
this way, Thrifty processes only a small percentage of edges
and delivers better performance than sampling CC algo-
rithms like Afforest [69].
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To provide better load balance in using CPU and GPU
integrated devices, FinePar [78] assigns high-degree ver-
tices to CPU while processing low-degree vertices by GPU.
VEBO [68] introduces a partitioning algorithm that distributes
high-degree vertices on different partitions, while trying to
assign equal number of edges to partitions.

7 Conclusion and Future Work
This paper studies behaviours of real-world graphs in trian-
gle counting and explains that the large fraction of edges
connected to hubs suffer from low reuse.
We introduced the LOTUS algorithm based on common

features of power-law graphs. Lotus processes hub edges
separately from non-hub edges, which allows Lotus to count
triangles in 3 steps. In each step, Lotus optimizes locality by
concentrating random memory accesses on a data structure
that contains more specific data in a much smaller size.
The evaluation shows that Lotus is 2.2–5.5× faster than

previous works.
We propose the following extensions as future work:

• TC is the simplest form of the k-clique counting problem.
We anticipate that the skewed statistics on triangles con-
taining hubs will become even more skewed for larger
cliques. It would be interesting to study how Lotus can
be applied for counting larger cliques.

• Lotus improves locality in counting HNN triangles by re-
ducing the size of topology data and avoiding interleaving
hub and non-hub edges; however, locality of HNN may
be further improved by applying blocking strategies [36]
to limit domain of random accesses.

• Creating multiple HE sub-graphs may improve perfor-
mance further, especially in graphswithmany high-degree
vertices (Section 5.5). It is an open question whether rec-
ognizing a higher number of distinct vertex types (two
kinds of hubs and non-hubs) creates further opportunities
to prune fruitless searches during HNN and NNN search.

Source Code Availability
Source code repository and further discussions are available
online in https://blogs.qub.ac.uk/GraphProcessing/LOTUS-
Locality-Optimizing-Triangle-Counting/ .
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