
LOTUS: Locality Optimizing Triangle Counting
Mohsen Koohi Esfahani
mkoohiesfahani01@qub.ac.uk

Peter Kilpatrick
p.kilpatrick@qub.ac.uk

Queen’s University Belfast
Northern Ireland, United Kingdom

https://blogs.qub.ac.uk/GraphProcessing/

Hans Vandierendonck
h.vandierendonck@qub.ac.uk

Abstract
Triangle Counting (TC) is a basic graph mining problemwith
numerous applications. However, the large size of real-world
graphs has a severe effect on TC performance.

This paper studies the TC algorithm from the perspective
of memory utilization. We investigate the implications of
the skewed degree distribution of real-world graphs on TC
and make novel observations on how memory locality is
negatively affected. Based on this, we introduce the LOTUS
algorithm as a structure-aware TC that optimizes locality.
The evaluation on 14 real-world graphs with up to 162

billion edges and on 3 different processor architectures of up
to 128 cores shows that Lotus is 2.2–5.5× faster than previous
works.

CCS Concepts: • Theory of computation → Graph al-
gorithms analysis; Shared memory algorithms; Mas-
sively parallel algorithms.

Keywords: Graph Algorithms, High Performance Comput-
ing,Memory Locality, Triangle Counting, Real-World Graphs,
Graph Mining, Clique Problem

1 Introduction
Triangle Counting (TC) is one of the fundamental problems
in graph processing which is used in several fields of science,
humanities, and technology [11, 12, 20, 24, 29, 30, 54, 57,
73, 75]. Different algorithms and optimizations have been
proposed in the literature [1, 5, 8, 12, 23, 27, 31, 34, 37, 48, 62].
However, efficient TC is still a challenge for large and fast-
growing real-world graph datasets.
The structure of real-world graphs poses further chal-

lenges to TC. Many real-world graphs derived from social

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9204-4/22/04. . . $15.00
https://doi.org/10.1145/3503221.3508402

1.0
2.0

4.03.1 3.2 3.9
2.7

5.2

11.4

7.4
8.9

19.9

B
ill

io
n

Tr
ia

ng
le

s
Pe

r S
ec

on
d

0

5

10

15

20

SkyLakeX Haswell Epyc

GraphGrind Gap Gbbs Lotus

Figure 1. Average TC rates

networks, the internet, and the world-wide web show a
skewed or heavy-tailed degree distribution, following apower-
law distribution: a very small fraction of vertices (known
as hubs) are connected to a disproportionately large fraction
of edges of the graph.
In this paper, we study the effects of power-law degree

distribution of the graphs on TC. We identify a number of
shortcomings in state-of-the-art TC algorithms and oppor-
tunities for improvement, in particular: (1) poor memory lo-
cality, especially during traversal of triangles containing non-
hub vertices, (2) (lack of) compactness of the graph topology
representation, and (3) opportunity to prune searches that
cannot uncover triangles.
The key observation behind this work is based on the

skewedness of the degree distribution of graphs, which has
specific consequences for TC: (1) on average, 93.4% of the
triangles include a hub vertex, and (2) edges between hub
vertices shape a network that is, on average, 1809× denser
than the whole graph. These observations lead us to see hubs
as a key to efficient TC.
This paper presents the design of LOTUS, a structure-

aware and locality-optimizing TC algorithm. Lotus improves
TC by distinguishing 4 types of triangles (depending on
whether they include 3, 2, 1 or 0 hubs) and splits TC into
multiple phases, corresponding to the types of triangle. Each
TC phase is designed as a stand-alone TC algorithm, us-
ing bespoke, compact data structures. The algorithms and
data structures are designed such that random memory

https://blogs.qub.ac.uk/GraphProcessing/
https://doi.org/10.1145/3503221.3508402

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Koohi Esfahani, Kilpatrick, Vandierendonck

accesses, a key challenge for memory locality in graph pro-
cessing, are targeted towards a small data structure in each
TC phase to utilize hardware caches in the best possible way.

We evaluate Lotus with TC algorithms in frameworks such
as GraphGrind [66], GAP [10], and GBBS [26] on 14 graphs
of up to 162 billion edges and on 3 processor architectures:
Intel SkyLakeX, Intel Haswell, and AMD Epyc with 32-128
cores. Figure 1 summarizes the average TC rates based on
the end-to-end execution time including preprocessing step
for the datasets with fewer than 10 billion edges.

The contributions of this work are:
• Studying the effects of skewed degree distribution of real-
world graph datasets on TC,

• Analysing the relationship between different vertex classes
from the perspective of memory utilization in common
neighbour computation,

• Introducing Lotus, a novel structure-aware TC algorithm
that optimizes locality for skewed degree graphs by sepa-
rating processing hub edges from non-hub edges,

• Introducing Squared Edge Tiling as a graph partitioning
algorithm for optimizing load balance in TC, and

• Evaluating the Lotus algorithm in comparison to previous
works.

This paper is structured as follows: Section 2 explains key
background materials. Section 3 explores opportunities for
improving TC by introducing novel features of power-law
graphs. Section 4 introduces the Lotus algorithm which is
evaluated in Section 5. Section 6 discusses further related
work and avenues for future work are presented in Section 7.

2 Background
2.1 Terminology
An undirected graph 𝐺 = (𝑉 , 𝐸) has a set of vertices 𝑉 , and
a set of edges 𝐸 between these vertices. Edge (𝑣,𝑢) is the
symmetric edge of edge (𝑢, 𝑣), where 𝑢 < 𝑣 .

𝑁𝑣 is the set of neighbours of vertex 𝑣 ,𝑁 <
𝑣 = {𝑢 ∈ 𝑁𝑣 |𝑢 < 𝑣},

and𝑁 >
𝑣 = {𝑢 ∈ 𝑁𝑣 |𝑢 > 𝑣}.We use the CSX (compressed sparse

rows or columns) representation [59].
Vertices are divided into (1) hub and (2) non-hub vertices.

The Lotus algorithm (Section 4.2) specifies how a vertex is
selected as hub. An edge can be in one of 3 forms: (1) hub to
hub edge, (2) hub to non-hub edge, or (3) non-hub to non-hub
edge. A hub edge is an edge with at least one hub endpoint.
A non-hub edge is an edge without any hub as its endpoints.
A triangle is called hub triangle if at least one of its vertices
is a hub vertex.

2.2 TC Algorithms
Three main TC algorithms are summarized in [62]:
• The Node iterator algorithm enumerates each pair of
neighbours of a vertex and checks if they are connected,

• The Edge iterator algorithm searches for common neigh-
bours of two endpoints of each edge, and

Algorithm 1: Forward algorithm
Input: 𝐺 (𝑉 , 𝐸)
Output: Triangles

1 𝐺 ′(𝑉 ′, 𝐸 ′) = reorder_by_degree(𝐺);
2 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 = 0;
3 par_for 𝑣 ∈ 𝑉 ′

4 par_for 𝑢 ∈ 𝑁 <
𝑣

5 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 + = |𝑁 <
𝑣 ∩ 𝑁 <

𝑢 |;
6 return 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠;

• The Forward algorithm sorts vertices by their degrees
in descending order and identifies common neighbours
between a vertex and each of its neighbours.

Algorithm 1 is an improved version of the Forward algo-
rithm introduced in [27] that we use as the baseline algo-
rithm. For each vertex 𝑣 and each 𝑢 ∈ 𝑁 <

𝑣 , 𝑁 <
𝑣 ∩ 𝑁 <

𝑢 speci-
fies the number of triangles including 𝑢 and 𝑣 . By limiting
neighbours to 𝑁 <, a triangle is counted only once and the
execution time is reduced as only half of the edges are pro-
cessed. The intersection is performed using merge join [62],
bitmap lookup [48], hashing [23, 62], or binary search [31].

3 Motivation
This section presents the key observations that underpin the
design of Lotus.

3.1 Low Locality in Processing Non-Hub Vertices
The Forward algorithm (Algorithm 1) uses degree ordering
to accelerate TC. Degree ordering improves load balance
and reduces the number of comparisons occurring in the
intersection operation [5].
For each edge, only one of (𝑢, 𝑣) or (𝑣,𝑢) needs to be

present in the graph as the symmetric edges are redundant
for TC. Degree ordering decides that (𝑣,𝑢) is retained if 𝑣 < 𝑢.
By consequence, only vertices 𝑣 with a smaller ID (𝑣 < 𝑢)
are stored in the neighbour list of a vertex 𝑢. The neighbour
list of a hub thus only contains hubs, and the neighbour list
of a non-hub contains both hub and non-hub neighbours.

0

7

1
6

3

4

2 5

8

9

Figure 2. An exam-
ple graph - hubs: 0, 1

This is illustrated in an example
graph (Figure 2) where edges have
the same color as the vertex they
are assigned to by degree ordering.
Edges between vertex 3 and hub ver-
tices 0 and 1 are assigned to vertex
3 and vertex 3 also has an edge to
vertex 2 which is a non-hub.

An immediate consequence of
this organization is that the neighbour lists of hubs (con-
taining hub-to-hub edges) are very frequently accessed. In-
deed, hubs have many neighbours, which by construction
are mostly non-hubs. Each time a non-hub vertex 𝑣 that
is a neighbour of a hub 𝑢 is processed, the neighbour list

LOTUS: Locality Optimizing Triangle Counting PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

of the hub is accessed (Algorithm 1, Line 5). Frequent ac-
cesses to the hubs’ neighbour lists prompt the processor
cache tomaintain hub neighbour lists in cache. Column
2 of Table 1 shows that these neighbour lists, consisting of
hub-to-hub edges, include 18.1% of the edges of the graph.
The flip-side of this is that there is a low opportunity

for the cache to retain neighbour lists of non-hubs.
While each non-hub neighbour list is accessed less frequently,
together they constitute 81.9% of the edges of power-law
graphs (Table 1, Columns 3 and 5).

3.2 Lack of Compactness of Graph Topology
In graph algorithms like breadth-first search, single-source
shortest-path, and connected components, the main mem-
ory access challenge consists of random memory accesses
to vertex data, which typically consists of 1–64 bits per ver-
tex. Random memory accesses thus target a data set of size
proportional to the number of vertices.
In contrast, the data accessed per vertex consists of the

neighbour lists, i.e., the graph topology, in TC. Thus, ran-
dommemory accesses in TC target a much larger data
set of size proportional to the number of edges. This
shows why achieving memory locality in TC is both more
challenging and more important.

Driven by this comparison, we question whether it is pos-
sible to represent neighbour lists more compactly, without
incurring overheads. The key to this is again in the hubs: the
number of hubs is very few, but the majority of the IDs in
neighbour lists of any vertex refer to hubs. In the power-law
graphs used in this study, 1% of vertices are connected to
72.9% of edges (Table 1, Column 4).

Drawing on the principles of coding and compression the-
ory [35], it is wasteful to represent highly frequently
occurring IDs using the same bitwidth as rarely occur-
ring IDs. The penalty for doing so is inefficient cache uti-
lization. While we reference coding theory to explain the
problem, it is important to design techniques that do
not incur runtime overhead to read graph topology data,
as this is the main operation in TC.

3.3 Fruitless Searches
Out of the many neighbour list intersections performed, a
relatively low number of triangles is found. Conservatively,
all combinations need to be investigated to ensure all trian-
gles are counted. However, there is some knowledge we can
use to identify fruitless searches.
Assume there is a set of vertices 𝑆 ⊂ 𝑉 where we know

ahead of time that 𝑁𝑣∩𝑆 = {}. Let 𝐹 = 𝑁𝑢 ∩𝑆 , then we know
ahead of time that there exists no triangle (𝑓 ,𝑢, 𝑣), where
𝑓 ∈ 𝐹 as 𝑓 cannot be a neighbour of 𝑣 . This follows from
𝑁𝑣 ∩ 𝑁𝑢 = 𝑁𝑣 ∩ (𝑁𝑢 \ 𝐹).

The most important 𝑆 , that fits in well with the power-law
graphs, is the set of hubs. As an example, in Figure 2 vertex
8 processes its neighbour 6 and loads its edges {0, 1, 4}. As 8

Dataset
Hub Edges (%) Non-hub to

Non-hub
Edges (%)

Hub
Triangles

(%)

Relative Den-
sity of Hubs
Sub-graph

Fruitless
Searches

(%)
Hub

to Hub
Hub to
Non-hub Total

LJGrp 4.7 76.9 81.5 18.5 99.9 467 78.1
Twtr10 43.5 29.8 73.3 26.7 99.6 4,347 64.0
Twtr 26.3 60.3 86.6 13.4 99.7 2,627 72.2
TwtrMpi 19.1 53.5 72.7 27.4 99.4 1,911 67.8
Frndstr 6.0 25.3 31.3 68.7 47.3 600 36.9
SK 4.9 75.6 80.5 19.5 97.0 490 56.4
WbCc 37.0 35.9 72.8 27.2 99.6 3,695 47.1
UKDls 14.2 63.9 78.2 21.8 98.8 1,423 39.9
UU 12.5 61.9 74.4 25.6 96.2 1,252 31.7
UKDmn 12.8 64.9 77.7 22.3 96.6 1,279 39.1
Average 18.1 54.8 72.9 27.1 93.4 1,809 53.3
Table 1. Topological characteristics of hubs (1% of vertices
with maximum degrees selected as hubs)

is not connected to a hub (0 or 1), it can be inferred that no
triangle exists including vertices 8, 6 and any of the hubs.

In other words, accessing hub edges cannot result in a
triangle during processing non-hub vertices that have
no edges to hubs (𝑁𝑣∩𝐻𝑢𝑏𝑠 = {}). However, hub edges are
frequently accessed in processing these non-hub vertices. We
measuredwhat fraction of accessed edges point to hubswhen
processing these vertices (Table 1, Column 8). On average,
53.3% of memory accesses are performed to hub edges
that can be avoided. This data was collected using merge
join intersection. Deploying binary search intersection [31]
also reduces these memory accesses (Section 6.3).

This shows that if we know that 𝑣 is not connected to a
hub, it is possible to prune the search and the power-law
structure of graphs is helpful to prevent accessing a large
fraction of edges in processing non-hub vertices.

3.4 Highly Dense Hubs Sub-graph
We have already observed that hubs are few and incident to
72.9% of the edges. Interestingly, as each vertex in a triangle
must have two incident edges, these statistics become even
more skewed when considering hubs. Column 6 of Table 1
(“Hub Triangles”) shows the percentage of triangles contain-
ing at least one hub. It shows that, on average, 93.4% of the
triangles contain at least one hub.

This observation is an immediate result from the tight con-
nections between hubs.We define the relative density (RD) of
a sub-graph 𝑆 = (𝑉 ′, 𝐸 ′) where𝑉 ′ ⊂ 𝑉 and 𝐸 ′ = 𝐸∩(𝑉 ′×𝑉 ′),
as 𝑅𝐷𝑆 =

|𝐸′ |/(|𝑉 ′ |2)
|𝐸 |/(|𝑉 |2) . Column 7 of Table 1 reports the 𝑅𝐷𝐻 ,

where H is the set of hubs and shows thathub-to-hub edges
create a dense sub-graph that is 1809 timesmore dense
than the full graph.

These statistics demonstrate that (i) hubs should be central
to the design of a TC algorithm; (ii) the high density of the
hubs sub-graph invites a highly compact data structure to
store this sub-graph.

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Koohi Esfahani, Kilpatrick, Vandierendonck
H

ub
s

N
on

 H
u b

s

216 Hubs Non Hubs

HHH

HNN HHN

NNN

(a) Adjacency matrix

v
h

2
 h

1

h
1

h
2

(b) HHH & HHN TC

v

u

u

Non-hub neighbours
of v

(d) NNN TC

v

u

u

Hub neighbours
 of u

Hub neighbours
of v

Non-hub neighbours
of v

(c) HNN TC

Non-hub neighbours
of u

HE NHE NHE
HE NHE

H2H
H2H

Hub neighbours of v

HE

Figure 3. Lotus adjacency matrix and TC steps

4 LOTUS
4.1 Lotus Idea
In order to manage the challenges surrounding hubs, Lotus
distinguishes 4 types of triangles:
• HHH: triangles between 3 hub vertices,
• HHN: triangles between 2 hub and 1 non-hub vertices,
• HNN: triangles between 1 hub and 2 non-hub vertices,
• NNN: triangles between 3 non-hub vertices.
Triangle counting is organized in three steps, each using

a bespoke algorithm and data structure designed to capture
the corresponding characteristics of locality.

4.1.1 CountingHHHandHHNTriangles. To count tri-
angles with at least two hub vertices, the key question is if
two hubs are connected? To check if two hubs are neighbours,
Lotus exploits two features of power-law graphs: (1) hubs
have a dense connection to each other (Section 3.4), and
(2) there is a small number of hubs (Section 3.2).

Lotus represents the adjacency information of hubs in a
dense bit array, with 1 bit per pair of hubs. As there are few
hubs, the bit array can be retained in cache. Using this bit
array, Lotus iterates over all distinct pairs of hub neighbours
of each vertex and identifies triangles if two hubs in a pair
are connected.

4.1.2 CountingHNNTriangles. HNN triangles have two
non-hub vertices that are connected to a hub. Hence, the
most frequently occurring edges, and thus the ones most
frequently queried, are hub edges. As such, Lotus organizes
the search around iterating non-hubs and their non-hub
neighbours, and then querying if they have a common hub
neighbour.

To performHNNTC efficiently, Lotus stores the hub neigh-
bours separately from the non-hub neighbours. Moreover,
based on the observation that hubs are few but frequently
mentioned (Section 3.2), we store the hub neighbours using
fewer bits per ID.

4.1.3 Counting NNN Triangles. In this step, Lotus iden-
tifies common non-hub neighbours between a non-hub ver-
tex and its non-hub neighbours. Lotus avoids loading hub

edges (Section 3.3) and only processes non-hub edges in this
step as it separately stores hub and non-hub edges.

4.2 Lotus Graph Structure
In order to achieve the targets explained in Section 4.1, Lotus
creates a special graph structure that consists of:

• Number of Hubs: Lotus selects the 64K (216) vertices
with the highest degrees as hubs.

• Hub to Hub (H2H) Bit Array: Lotus represents hub-
to-hub edges using this bit array. Since each hub has
edges only to hubs with lower IDs, H2H is a triangular
array (instead of a 2D square array). In this way, for hub
vertices ℎ1 and ℎ2 where ℎ1 > ℎ2 ≥ 0, the bit with index
ℎ1(ℎ1 − 1)/2 + ℎ2 specifies if ℎ1 has an edge to ℎ2.

• Hub Edges (HE) Sub-graph: This sub-graph represents
all hub edges of the graph. It is stored in CSX format.
As Lotus selects 64K hubs, each edge (neighbour ID) in
HE sub-graph is represented in 16 bits. For vertex 𝑣 , HE
represents all hub neighbours ℎ of 𝑣 where ℎ < 𝑣 .

• Non-Hub Edges (NHE) Sub-graph: This sub-graph rep-
resents edges from each vertex 𝑣 to its non-hub vertices
𝑢, where 𝑢 < 𝑣 . This sub-graph is also in CSX format, but
unlike HE, NHE assigns 32 bits memory space per edge.

Figure 3a shows the adjacencymatrix of Lotus. The 4 types
of triangles are illustrated to demonstrate in which range
their endpoints sit. Note that hub-to-hub edges are recorded
twice: once in the HE sub-graph and once in the H2H, which
overlaps HE in the figure.

4.3 Lotus Preprocessing
Lotus creates its graph structure in a preprocessing step
before counting triangles. Algorithm 2 shows how Lotus
creates its graph.

4.3.1 Creating Relabeling Array. Lotus assigns the first
consecutive IDs to hub vertices, therefore it is necessary
to relabel vertices. Line 1 creates the relabeling array. The
create_relabeling_array() function selects the hub vertices
with highest degrees and assigns the first IDs to them.

LOTUS: Locality Optimizing Triangle Counting PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Algorithm 2: Lotus Preprocessing
Input: 𝐺 (𝑉 , 𝐸)
Output: LotusGraph

1 𝑅𝐴 = create_relabeling_array(𝐺);
2 ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡 = (1 ≪ 16);
3 TBitArray 𝐻2𝐻 (ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡);
4 Graph < 𝑢𝑠ℎ𝑜𝑟𝑡 > 𝐻𝐸;
5 Graph < 𝑢𝑖𝑛𝑡 > 𝑁𝐻𝐸;
6 par_for 𝑣𝑜𝑙𝑑 ∈ 𝑉

7 𝑣𝑛𝑒𝑤 = 𝑅𝐴[𝑣𝑜𝑙𝑑];
8 Array < 𝑢𝑠ℎ𝑜𝑟𝑡 > ℎ𝑒;
9 Array < 𝑢𝑖𝑛𝑡 > 𝑛ℎ𝑒;

10 for 𝑢𝑜𝑙𝑑 ∈ 𝑁𝑣𝑜𝑙𝑑 do
11 if 𝑢𝑜𝑙𝑑 == 𝑣𝑜𝑙𝑑 then

/* self-edge */

12 continue;
13 𝑢𝑛𝑒𝑤 = 𝑅𝐴[𝑢𝑜𝑙𝑑];
14 if 𝑢𝑛𝑒𝑤 > 𝑣𝑛𝑒𝑤 then

/* symmetric edge */

15 continue;
16 if 𝑢𝑛𝑒𝑤 < ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡 then

/* hub neighbour */

17 ℎ𝑒.push(𝑢𝑛𝑒𝑤);
18 if 𝑣𝑛𝑒𝑤 < ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡 then

/* hub neighbour of a hub */

19 𝐻2𝐻.set(𝑣𝑛𝑒𝑤, 𝑢𝑛𝑒𝑤);
20 else

/* non-hub neighbour */

21 𝑛ℎ𝑒.push(𝑢𝑛𝑒𝑤);
22 𝐻𝐸.setEdges(𝑣𝑛𝑒𝑤, ℎ𝑒);
23 𝑁𝐻𝐸.setEdges(𝑣𝑛𝑒𝑤, 𝑛ℎ𝑒);
24 return (ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡, 𝐻2𝐻, 𝐻𝐸, 𝑁𝐻𝐸);

In addition to hub vertices, there are a number of high-
degree vertices. If they are assigned large IDs, the num-
ber of comparisons when processing NNN triangles is in-
creased (Section 3). So, Lotus assigns the first consecutive
IDs to 10% of vertices with the highest degrees instead of
only 64K ones.

The remaining IDs are assigned to non-hub vertices in the
same order as the main graph. In this way, Lotus prevents
destroying the initial locality of graphs, which is a known
artefact from degree ordering [44, 68, 72].
𝑐𝑟𝑒𝑎𝑡𝑒_𝑟𝑒𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔_𝑎𝑟𝑟𝑎𝑦 () returns an array that is indexed

by the original ID of a vertex and the value at that index spec-
ifies the new ID of that vertex.

4.3.2 Creating Bit Array and Sub-graphs. Line 3 initial-
izes the H2H triangular bit array storing hub-to-hub edges
by allocating memory of ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡 ∗ (ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡 − 1)/2
bits size and setting all bits to zero.

Lines 4 and 5 initialize sub-graphs for HE and NHEwhere
the size of each edge is 16 and 32 bits, respectively.
Lines 6-23 process each vertex in the graph. Lines 8-9

initialize the he and nhe arrays to contain hub and non-hub
neighbours of a vertex, respectively.
Each neighbour of a vertex is considered in Lines 11-21

and self-edges and symmetric edges are ignored (Lines 11-
15). Similar to the baseline algorithm (Section 2.2), Lotus
does not process symmetric edges and limits neighbours of
a vertex to the ones that have lower IDs. This restricts the
neighbour list of vertex 𝑣𝑛𝑒𝑤 to 𝑁 <

𝑣𝑛𝑒𝑤
.

The neighbour is assigned to he (Line 17), if it is a hub
neighbour. In this case, the H2H bit array is set if the vertex
and its neighbour are both hubs (Line 19). If the neighbour
is a non-hub vertex, it is added to nhe (Line 21).
After processing all edges of a vertex, Lines 22-23 call

𝑠𝑒𝑡𝐸𝑑𝑔𝑒𝑠 () method that sorts the neighbour lists he and nhe
and assigns them to the relevant vertex (𝑣𝑛𝑒𝑤) of HE and
NHE sub-graphs, respectively.
In Lines 5 and 9, 32-bit vertex ID is sufficient for public

data sets as they have fewer than 232 vertices. However, for
datasets with greater number of vertices, 64-bit IDs can be
used without losing the benefits of Lotus.

4.4 Counting Triangles in Lotus
Algorithm 3 shows how Lotus counts triangles:

4.4.1 HHH and HHN. Lotus creates all distinct pairs be-
tween hub neighbours of a vertex (Lines 3-4) and if two hubs
of a pair are connected (Line 5), a triangle has been found.
Note that the bit array is laid in “ℎ1-major” format, ensuring
that bits for subsequent ℎ2 values are placed in consecu-
tive locations. Moreover, as ℎ1 changes in the outer loop on
Line 3, the calculation ℎ1(ℎ1 − 1)/2 is reused as ℎ2 changes
in the inner loop in Line 4.
Figure 3b shows counting HHH and HHN triangles for

vertex 𝑣 with hub neighbours ℎ2 and ℎ1. The existence of
triangle (ℎ2, ℎ1, 𝑣) is validated by checking if ℎ2 has an edge
to ℎ1 in the H2H sub-graph.

4.4.2 HNN. Lotus finds common hub neighbours between
each non-hub vertex and its non-hub neighbours. Line 7
iterates over all vertices. For each non-hub vertex 𝑣 , its non-
hub neighbours such as 𝑢 are considered (Line 8), and each
common hub neighbour of 𝑢 and 𝑣 forms a triangle (Line 9).

In Figure 3c, for vertex 𝑣 and its non-hub neighbours such
as 𝑢 (that are in NHE sub-graph), hub neighbours of 𝑢 and 𝑣
(that are in HE sub-graph) are matched.

4.4.3 NNN. Lines 10–12 are similar to the Forward algo-
rithm to find NNN triangles in the NHE. Lotus uses merge
join for intersection as the neighbour lists of non-hub ver-
tices are relatively short. This prevents overheads imposed
by other solutions (Section 6.3).

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Koohi Esfahani, Kilpatrick, Vandierendonck

Algorithm 3: Counting Triangles in Lotus
Input: 𝐿𝑜𝑡𝑢𝑠𝐺𝑟𝑎𝑝ℎ 𝐿(ℎ𝑢𝑏𝑠_𝑐𝑜𝑢𝑛𝑡, 𝐻2𝐻, 𝐻𝐸, 𝑁𝐻𝐸)
Output: Triangles

1 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 = 0;
/* Counting HHH and HHN triangles */

2 par_for 𝑣 ∈ 𝐻𝐸.𝑉

3 par_for ℎ1 ∈ 𝐻𝐸.𝑁𝑣

4 for ℎ2 ∈ {ℎ ∈ 𝐻𝐸.𝑁𝑣 | ℎ < ℎ1} do
5 if 𝐻2𝐻.𝑖𝑠𝑆𝑒𝑡 (ℎ1, ℎ2) then
6 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 + +;
/* Counting HNN triangles */

7 par_for 𝑣 ∈ 𝑁𝐻𝐸.𝑉

8 par_for 𝑢 ∈ 𝑁𝐻𝐸.𝑁𝑣

9 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠+ = |𝐻𝐸.𝑁𝑣 ∩ 𝐻𝐸.𝑁𝑢 |;
/* Counting NNN triangles */

10 par_for 𝑣 ∈ 𝑁𝐻𝐸.𝑉

11 par_for 𝑢 ∈ 𝑁𝐻𝐸.𝑁𝑣

12 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠+ = |𝑁𝐻𝐸.𝑁𝑣 ∩ 𝑁𝐻𝐸.𝑁𝑢 |;
13 return 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠;

In Figure 3d, for vertex 𝑣 and for its non-hub neighbours
such as 𝑢 (that are in NHE), non-hub neighbours of 𝑢 and 𝑣
(that are in NHE) are matched.

4.5 How Does Lotus Improve Locality?
In counting HHH and HHN triangles, Lotus reads hub neigh-
bours of a vertex in sequential accesses and iterates over
all pairs of hub neighbours (Lines 3-4 of Algorithm 3). In
other words, Lotus accesses the neighbour list of a ver-
tex only for processing that vertex. The neighbour lists
are streamed through cache. Sequentially streamed accesses
are prefetched by hardware in timely fashion. Only the H2H
bit array is used (Line 5) for random accesses to topology
data. By concentrating random accesses on the H2H bit array,
the range of data accessed randomly is significantly re-
duced.

This increases the frequency of cache hits. Table 7 shows
that graph datasets in this study have edges with topology
size of 0.42 - 12.30 Gigabytes in the CSX format, but the
H2H size is less than 256Megabytes. Moreover,H2H stores
edges in an addressable format that facilitates efficient
checking if two hubs are connected in constant time, and
just a few instructions. Section 5.7 shows that 64 Megabytes
cache space suffices to satisfy 90% of accesses to H2H.
In Algorithm 3, Lotus has two similar nested loops for

counting HNN and NNN triangles in Lines 7-8 and 10-11.
These loops iterate over the same domain (the neighbour lists
of NHE). Lotus keeps the body of these loops (intersections
at Lines 9 and 12) separate (as opposed to fusing the loops).
Two contradictory effects need to be traded-off:

• Random memory accesses are made to 𝐻𝐸.𝑁𝑢 (Line 9)
and 𝑁𝐻𝐸.𝑁𝑢 (Line 12). Reuse of this data before eviction

TC Step Random Accesses Edge Size Total Size of Edges
HHH & HHN 𝐻2𝐻 1 bit 256 Megabytes

HNN 𝐻𝐸.𝐸 16 bits |𝐻𝐸.𝐸 | ∗ 2 Bytes
NNN 𝑁𝐻𝐸.𝐸 32 bits |𝑁𝐻𝐸.𝐸 | ∗ 4 Bytes
Table 2. Random memory accesses in Lotus TC

from the cache is possible. If we were to fuse the loops
in Lines 7–12, then reuse of this data would become less
likely, as the total volume of randomly accessed data, and
thus the working set size, will increase.

• The cost of traversing the NHE sub-graph itself (fetching
𝑁𝐻𝐸.𝑉 and 𝑁𝐻𝐸.𝑁𝑣) is low as this data is streamed in
sequentially. The NHE topology is relatively small as it
contains only 27% of edges on average (Table 1, Column 7).
Lotus improves locality by dividing TC into three

steps and in each step dedicates cache to a smaller spe-
cial data structure that is most frequently needed. Ta-
ble 2 summarizes which data structure is accessed in random
order. Section 5.3 shows that Lotus reduces last level cache
misses by 2.1× and DTLB misses by 34.6×, on average.

4.6 Graph Partitioning and Load Balancing in Lotus
Edge Tiling [56] improves load balance by splitting the edge
list of high-degree vertices into smaller parts and scheduling
these on different concurrent threads.

In Line 3 of Algorithm 3, the amount of work each neigh-
bour (ℎ1) performs depends on its offset from the first neigh-
bour. As a consequence, we cannot divide work between
threads by assigning the same number of neighbours to each
thread.

In order to parallelize the loop in Line 3 of Algorithm 3, Lo-
tus introduces Squared Edge Tiling that creates partitions
with equal work complexity for neighbours of a vertex.

For vertex 𝑣 with |𝑁𝑣 | neighbours, the total work is |𝑁𝑣 | ∗
(|𝑁𝑣 | − 1)/2 and if the total work performed from the first
neighbour until the i-th neighbour is 𝑓 fraction of the total
work, where 0 < 𝑓 < 1, then:

𝑖 ∗ (𝑖 − 1)/2 = 𝑓 |𝑁𝑣 | (|𝑁𝑣 | − 1)/2 ,

or
𝑖 = (1 +

√
𝑓 (2|𝑁𝑣 | − 1)2 + 1 − 𝑓)/2 .

Since |𝑁𝑣 | ≫ 𝑓 ,

𝑖

|𝑁𝑣 |
≈

1 +
√
𝑓 (2|𝑁𝑣 | − 1)2
2|𝑁𝑣 |

≈
√
𝑓 ,

or
𝑖 ≈ |𝑁𝑣 | ∗

√
𝑓 .

Using this formula, we can identify the boundaries to
partition the loop by changing 𝑓 . As an example, for parti-
tioning total work for a vertex with 100 neighbours into 5
partitions, the partition borders will be 0, 100 ∗

√
0.2 = 45,

100 ∗
√
0.4 = 63, 100 ∗

√
0.6 = 77,100 ∗

√
0.8 = 89, and 100.

While the number of triangles may vary per tile, the ef-
fort per tile is balanced. Lotus performs squared edge tiling

LOTUS: Locality Optimizing Triangle Counting PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

SkyLakeX Haswell Epyc
CPU Model Intel Xeon Gold 6130 Intel Xeon E5-4627 AMD Epyc 7702
CPU Frequency 2.10 GHz 2.6 GHz 2 GHz
Sockets 2 4 2
NUMA Nodes 2 4 8
Total CPU Cores 32 40 128
Hyperthreading No No No
L1 Cache 32 KB / 1 core 32 KB / 1 core 32 KB / 1 core
L2 Cache 1 MB / 1 core 256 KB / 1 core 512 KB / 1 core
L3 Cache 22 MB / 16 cores 25.6 MB / 10 cores 16 MB / 4 cores
Total L3 Cache 44 MB 102.4 MB 512 MB
Total Memory 768 GB 1,024 GB 2,048 GB

Table 3. Machines

Dataset Name Type Source |V| (M) |E| (B) |Triangles|
LJGrp LiveJournal SN KN 7 0.22 141,388,608
Twtr10 Twitter 2010 SN NR 21 0.53 17,295,646,010
Twtr Twitter SN NR 28 0.96 13,734,746,881
TwtrMpi Twitter-MPI SN NR 41 2.41 34,824,916,864
Frndstr Friendster SN NR 65 3.61 4,173,724,142
SK SK-Domain WG LWA 50 3.64 84,907,040,872
WbCc Web-CC12 WG NR 89 3.87 417,026,090,229
UKDls UK-Delis WG LWA 110 6.92 663,713,224,204
UU UK-Union WG LWA 133 9.36 453,830,915,490
UKDmn UK-Domain WG KN 105 6.60 286,701,284,103
MClst MetaClust BG HM 282 42.8 5,588,867,541,009
ClWb12 ClueWeb12 WG LWA 978 74.7 1,995,295,290,765
WDC14 WDC 2014 WG WDC 1,724 124 4,587,563,913,535
EU15 EU Domains WG LWA 1,071 161 15,338,196,409,949

Table 4. Datasets

Dataset SkyLakeX Haswell Epyc
BBTC GGrnd GAP GBBS Lotus BBTC GGrnd GAP GBBS Lotus BBTC GGrnd GAP GBBS Lotus

LJGrp 4.1 4.7 6.4 2.5 1.0 8.6 3.9 6.8 1.4 1.1 2.4 2.5 6.6 0.5 0.8
Twtr10 62.4 74.2 32.7 32.8 6.7 15.9 50.0 28.9 25.3 6.7 31.5 21.6 45.0 9.0 4.1
Twtr 98.0 77.0 32.1 32.1 10.0 122.9 56.3 28.5 25.1 9.8 81.3 25.8 20.3 9.4 6.1
TwtrMpi 377.7 282.2 80.5 90.5 36.8 234.5 129.2 67.6 72.4 33.7 333.3 67.2 38.8 25.9 18.2
Frndstr 129.5 129.1 70.5 76.4 56.7 176.8 111.7 69.5 67.5 54.6 59.9 33.3 27.4 24.5 23.8
SK 246.3 56.5 28.8 19.5 7.3 871.5 37.5 29.0 8.2 6.5 246.5 19.5 21.0 3.3 2.9
WbCc 602.0 649.0 121.1 233.8 64.2 362.2 279.0 118.9 170.1 57.9 534.5 134.1 92.1 51.7 21.9
UKDls - 383.3 67.7 80.0 32.7 - 141.5 68.3 48.7 26.1 - 58.6 89.8 38.6 12.2
UU - 134.9 61.6 74.4 29.3 - 86.9 56.8 38.6 22.1 - 43.8 36.0 15.0 9.5
UKDmn - 123.9 50.3 53.6 19.9 - 58.0 48.5 24.9 15.9 - 32.6 32.4 10.3 7.2
Lotus Avg.
Speedup 11.3× 7.4× 3.0× 2.8× 24.6× 4.6× 3.1× 2.0× 22.1× 4.5× 5.3× 1.7×

Table 5. End to end TC execution times in seconds - GGrnd: GraphGrind - Failed attempts are shown by dash - Avg. Speedup
is arithmetic mean over Lotus speedup for each dataset

during the preprocessing step. Values of
√
𝑓 are fixed for

different vertices as 𝑓 indicates the fraction of work and for
dividing work into 𝑝 partitions, 𝑓 = 𝑘

𝑝
, where 0 < 𝑘 < 𝑝 . So,

values of
√
𝑓 are pre-calculated and reused in calculating the

partition boundaries of different high-degree vertices.
Section 5.8 shows that squared edge tiling provides 2.7×

speedup in processing HHH and HHN triangles.

5 Evaluation
5.1 Experimental Setup
5.1.1 Machines. We present experiments on 3 machines
with different processor architectures, listed in Table 3. The
machines use CentOS 7.

5.1.2 Datasets. Table 4 shows the datasets and their sources:
“Konect” (KN) [15, 46, 55], “NetworkRepository” (NR) [18, 21,
22, 58, 64], “Laboratory for Web Algorithmics” (LWA) [15–
18, 47], “HipMCL” (HM) [9, 65], and “Web Data Commons”
(WDC) [49, 52, 53]. Datasets types are Social Network (SN),
Web Graph (WG), or Bio Graph (BG). Numbers of edges are
in billions and numbers of vertices are in millions, counted
after removing zero degree vertices. Graphs are represented
in Compressed Sparse Row/Column [59] with |𝑉 | + 1 index

Dataset Epyc
GBBS Lotus

MClst 1,415.2 784.5
ClWb12 81.7 29.9
WDC14 170.1 85.7
EU15 449.3 256.9
Lotus Avg. Speedup 2.1×

Table 6. End to end TC execution times in seconds

values of 8 bytes per index value and |𝐸 | neighbour IDs of 4
bytes each. Lotus uses 2 bytes for neighbour IDs of HE.

5.1.3 Lotus. We implemented Lotus in the C language us-
ing the pthread, libnuma, and papi [70] libraries. We use
the interleaved NUMA memory policy and to have a better
load balance[61], we apply work-stealing for parallel pro-
cessing of graph partitions as described in Section 4.6. We
use the master-worker model for managing parallel threads
and futex syscall for thread synchronization. We compiled
the source code using the gcc-9.2 compiler with -O3 flag.

5.1.4 Frameworks and TC algorithms. We use the fol-
lowing algorithms/implementations for evaluating Lotus:

http://konect.cc/networks/livejournal-groupmemberships/
http://networkrepository.com/soc-twitter-2010.php
networkrepository.com/soc-twitter.php
http://networkrepository.com/soc-twitter-mpi-sws.php
http://networkrepository.com/soc-friendster.php
http://law.di.unimi.it/webdata/sk-2005
http://networkrepository.com/web-cc12-hostgraph.php
http://law.di.unimi.it/webdata/uk-2007-02/
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
http://konect.cc/networks/dimacs10-uk-2007-05/
https://portal.nersc.gov/project/m1982/HipMCL/Metaclust/
https://law.di.unimi.it/webdata/clueweb12/
http://webdatacommons.org/hyperlinkgraph/2014-04/download.html
https://law.di.unimi.it/webdata/eu-2015/
http://konect.cc
http://networkrepository.co
http://law.di.unimi.it
https://bitbucket.org/azadcse/hipmcl/wiki/Home
http://webdatacommons.org/hyperlinkgraph/

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Koohi Esfahani, Kilpatrick, Vandierendonck
L

3
M

is
se

s (
in

 b
ill

io
ns

)

0.0

10.0

20.0

30.0

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Forward Lotus

(a) Last level cache misses

D
T

L
B

 M
is

se
s (

in
 m

ill
io

ns
)

0.5

1.0

5.0

10.0

50.0

100.0

500.0

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Forward Lotus

(b) DTLB misses (Log scale vertical axis)
Figure 4. Comparison of last level cache misses and DTLB misses [SkyLakeX]

M
em

or
y

A
cc

es
se

s (
in

 b
ill

io
ns

)

0

500

1,000

1,500

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Forward Lotus

(a) Memory accesses (load & store instructions)

H
W

 In
st

ru
ct

io
ns

 (i
n

bi
lli

on
s)

0

2,500

5,000

7,500

10,000

12,500

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Forward Lotus

(b) Hardware instructions

B
ra

nc
h

 M
is

-p
re

di
ct

io
ns

 (i
n

bi
lli

on
s)

0.0

25.0

50.0

75.0

100.0

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Forward Lotus

(c) Branch mis-predictions
Figure 5. Comparison of hardware events [SkyLakeX]

1. BBTC [76] (commit 88fe6bc) that improves load balanc-
ing in TC through better partitioning.

2. Edge iterator in GraphGrind [66, 67] (commit 5099761).
3. Forward algorithm implementation in GAP [10] (commit
6ac1afd), as a study of graph frameworks [7] shows TC
performance of other graph processing frameworks that
do not use vectorization, are close to GAP (±10%) .

4. TC of GBBS [26] (commit 38964eb) that improves [63] by
parallelizing the intersection in the Forward algorithm.
All algorithms use degree ordering to accelerate TC and

we report end-to-end execution time.

5.2 Comparison to Previous Works
Tables 5 compares Lotus execution time with other TC algo-
rithms for graphs smaller than 10 billion edges.
This table shows that the speedup obtained by Lotus on

the Epyc architecture with 128 cores is less than on the other
architectures. This is due to the total on-chip cache size. The
Epyc system has two sockets with 512MB total L3 cache,
which is 12 times larger than the L3 cache on the SkyLakeX
machine. This large L3 cache captures a significantly higher
fraction of memory accesses, and poses lesser challenges
relating to memory locality. As a result, speedup obtained
by Lotus is less, due to the larger cache size.

Table 6 shows the results of Lotus in comparison to GBBS
on the Epyc machine and for graphs greater than 10 billions
edges. This shows that Lotus delivers better speedups for
larger graphs.

On average, Lotus is 19.3 times faster than BBTC, 5.5
times faster than GraphGrind, 3.8 times faster than
GAP, and 2.2 times faster than GBBS.

5.3 Has Lotus Improved Locality?
In Section 4.5, we explained how Lotus improves locality.
To evaluate the locality effects of Lotus, we compare the
last level cache misses and DTLB misses of Lotus and For-
ward algorithms on the SkyLakeX machine in Figure 4a, and
Figure 4b. Lotus reduces last level cache misses by up
to 4.0× and on average by 2.1×. DTLB misses are also
reduced by up to 56× and on average by 34.6×.

Besides improving locality, Lotus is also a more effi-
cient algorithm throughout. Figure 5 compares hardware
events for execution of Lotus and Forward algorithms. It
shows that, on average, Lotus reduces memory accesses
(load and store instructions) by 1.5×, hardware instruc-
tions by 1.7×, and branch mis-predictions by 2.4×.

5.4 Execution Breakdown
Figure 6 displays the breakdown of Lotus execution time
and shows time passed in (1) preprocessing, (2) counting
HHH and HHN triangles, (3) counting HNN triangles, and
(4) counting non-hub triangles.

It shows that, on average, 19.4% of the total execution
time is passed in preprocessing. Moreover, on average,
40.4% of the triangle counting time is passed in count-
ing non-hub triangles.

https://github.com/GT-TDAlab/bbTC/
https://github.com/Jaiwen/GraphGrind
https://github.com/sbeamer/GAPbs
https://github.com/ParAlg/gbbs/

LOTUS: Locality Optimizing Triangle Counting PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
C

on
tr

ib
ut

io
n

(%
)

0%

25%

50%

75%

100%

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Preprocessing HHH & HHN HNN NNN

(a) SkyLakeX

C
on

tr
ib

ut
io

n
(%

)

0%

25%

50%

75%

100%

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Preprocessing HHH & HHN HNN NNN

(b) Haswell

C
on

tr
ib

ut
io

n
(%

)

0%

25%

50%

75%

100%

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

Preprocessing HHH & HHN HNN NNN

(c) Epyc
Figure 6. Lotus execution breakdown (numbers on each bar are in seconds)

0.1 1.2 1.8 4.5

86.0

14.9 13.1

53.0

68.8 66.7

9.6 2.4 5.5 10.4

10.5

15.0
2.7

9.4

8.7 10.1

Pe
rc

en
ta

ge
 o

f T
ri

an
gl

es

0%

25%

50%

75%

100%

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

HHH & HHN HNN NNN

Figure 7. Contribution of triangles

19.4

41.4

28.1

51.8

92.4

36.4

59.8 58.4 55.6 57.8

80.6 58.6 71.9 48.2 7.6 63.6 40.2 41.6 44.5 42.3

Pe
rc

en
ta

ge
 o

f E
dg

es

0%

25%

50%

75%

100%

LJGrp Twtr10 Twtr TwtrMpi Frndstr SK WbCc UKDls UU UKDmn

HE NHE

Figure 8. Percentage of edges in HE and NHE sub-graphs

Figure 7 compares the number of hub and non-hub trian-
gles counted by Lotus. It shows that, on average, 68.9% of
the triangles are counted as hub triangles in Lotus and
31.1% as non-hub triangles.
Figure 8 compares the number of edges in HE and NHE

sub-graphs. It shows that, on average, Lotus processes
50.1% of edges as hub edges. The number of triangles and
edges are different from Table 1 as 1% of vertices have been
selected there as hubs.

5.5 Less Power-Law Graphs
Figures 8 and 7 show that less power-law graphsmay not ben-
efit fromLotus as other datasets. For example, the Friendster
dataset has a relatively low skewness and the highest degree
is 5K. However, Lotus selects a constant number of hubs
(64K). By consequence, only 7.6% of the edges connect to
these hubs and Lotus spends most of the TC time in counting
non-hub triangles (Figure 6).
In general, less power-law graphs can be categorized in

two categories:

1. Social networks with a great number of low-degree
hubs where the tight connection between high-degree
vertices [44] allows improving performance by recur-
sively applying Lotus and splitting the NHE sub-graph
further in new H2H, HE and NHE components, similar to
how iHTL extracts dense flipped blocks [42].

2. Graphs that have a very small number of very high-
degree hubs, where the Forward algorithm is effective
even without degree ordering. In processing low-degree
vertices of these graphs, two types of memory accesses
are performed:
(i) Accesses to neighbour list of hub vertices that are
easily maintained in the cache as hubs are rare but are
accessed frequently (since they are neighbours to a great
percentage of vertices), and
(ii) Accesses to neighbour list of low-degree neighbours
that a good spatial locality (which usually exists in graphs
before degree reordering, especially in LWA graphs as a
result of applying Layered Label Propagation [17]) results
mostly in cache hits (since spatial locality assigns con-
secutive IDs to neighbours and necessitates consecutive
processing of low-degree neighbours).
For these graphs, it is necessary to check the degree dis-
tribution of the graph at the start of TC and to apply the
Forward or edge-iterator algorithms if the graph is not
skewed enough. GAP [10] uses the average degree of the
graph and a sampling mechanism to compare the average
and median degree of vertices.

5.6 Topology Data Size
Table 7 compares size of topology data in CSX format and
Lotus. Since the Forward algorithm (Algorithm 1) uses only
half of the edges, we have calculated sizes of CSX edges and
CSX without symmetric edges.

Lotus affects the size of topology data in 3 ways:

• The HE and NHE sub-graphs require an index array each,
adding 8(|𝑉 | + 1) Bytes.

• Adding the H2H bit array, of fixed size (256 Megabytes).
• Reducing the size of hub IDs, which saves 2 bytes per
edge in the HE sub-graph.

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Koohi Esfahani, Kilpatrick, Vandierendonck

Dataset CSX Edges (GB) CSX (GB) Lotus (GB) Growth (%)
LJGrp 0.4 0.5 0.6 28.8
Twtr10 1.0 1.1 1.3 10.4
Twtr 1.8 2.0 1.8 -8.9
TwtrMpi 4.5 4.8 4.3 -10.8
Frndstr 6.7 7.2 7.7 6.7
SK 6.8 7.2 5.6 -21.6
WbCc 7.2 7.9 7.3 -6.8
UKDls 12.9 13.7 12.1 -11.9
UU 17.4 18.4 15.7 -14.5
UKDmn 12.3 13.1 11.5 -12.0

Table 7. Size of topology data (Gigabytes)

Dataset H2H Density (%) H2H Zero Cachelines (%)
LJGrp 0.20 62.51
Twtr10 2.83 5.72
Twtr 2.05 8.60
TwtrMpi 2.73 9.89
Frndstr 0.29 36.94
SK 1.04 91.74
WbCc 15.26 74.60
UKDls 2.56 93.31
UU 0.17 91.45
UKDmn 0.15 95.15

Table 8. Lotus H2H bit array characteristics
For graph datasets like SK-Domain where Lotus collects a

greater number of edges as hub edges, the topology size is
reduced more as HE size is reduced.
Table 7 shows that, on average, Lotus reduces size of

topology data by 4.1%. Independently of reducing size, only
a subset of the topology data is accessed in each phase, re-
sulting in smaller working sets.

5.7 H2H Bit Array
H2H is a dense triangular adjacency array that lists edges be-
tween a hub and its hub neighbours with lower IDs. The first
column of Table 8 shows that the density of H2H (fraction
of non-zero bits) is between 0.2% and 15.3%.
We also measured how many 64-byte aligned blocks of

H2H contain 512 zero bits (Table 8, column 3). In web graphs,
75–95% of H2H blocks contain no edges. Edges are thus
tightly packed in cache blocks, which implies that hubs
in web graphs are mostly connected to a number of
hubs. In contrast, social networks exhibit a different behav-
ior where 5–62% of the blocks are zero that shows edges are
thus more dispersed throughout H2H.
To have a better understanding of how H2H is placed in

cache, we measure how many accesses to H2H are satisfied
by selecting the most frequently accessed cachelines. To this
end, we sort cachelines based on how frequently they are
accessed and we calculate the partial sum of their accesses.
Figure 9 shows that by storing one million cachelines of

H2H in cache, more than 90% of accesses to H2H are satisfied.
In other words, 64 Megabytes of cache space suffices to
satisfy 90% of accesses to H2H.

0 0.5M 1M 1.5M 2M 2.5M 3M 3.5M 4M
0

20

40

60

80

100

LJGrp
Twtr10
Twtr
TwtrMpi
Frndstr
SK
WbCc
UKDls
UU
UKDmn

Cachelines

H
it

 A
cc

es
se

s
(%

)

Figure 9. Percentage of accumulative memory accesses to
most frequently accessed cachelines of H2H (M: Million)

Dataset Edge Balanced (%) Squared Edge Tiling (%)
Twtr10 32.1 1.0
TwtrMpi 32.6 0.7
SK 13.6 3.1
WbCc 83.3 1.3
UKDls 41.8 3.3

Table 9. Average idle time in percent of total execution time
[SkyLakeX]
This shows that 90% of (ℎ1, ℎ2) pairs produced in Line 5

of Algorithm 3 access only 25% of H2H cachelines. In other
word, accesses to theH2H sub-graph benefit from a high
level of locality.
While using a hash table can be seen as an option for

implementing H2H, Figure 9 shows that the high level of
locality in memory accesses to H2H makes it suboptimal to
use a hash table for H2H. A hashing mechanism imposes
more instruction count per memory access, a higher memory
footprint, and a higher preprocessing time.

5.8 Squared Edge Tiling
In Section 4.6, we introduced the squared edge tiling par-
titioning policy to provide better load balance in process-
ing HHH and HHN triangles in Lotus algorithm. Lotus ap-
plies squared edge tiling for vertices with degree greater
than 512 and divides the total work of each vertex between
𝑝 = 2 ∗ #𝑡ℎ𝑟𝑒𝑎𝑑𝑠 partitions.

Table 9 shows the average idle time of threads in the first
step of Lotus for two partitioning policies: edge balanced
partitioning [67, 79] and squared edge tiling, when running
on the SkyLakeX machine. Edge balanced divides edges into
256 ∗ #𝑡ℎ𝑟𝑒𝑎𝑑𝑠 partitions. On average, squared edge tiling
provides 2.7× speedup in processing HHH and HHN
triangles.

6 Related Work
6.1 TC History
Itai and Rodeh [37, 38] use rooted spanning tree for TC.
AYZ algorithm [1, 2] provides better computation complex-
ity (O(|𝐸 |1.41)) in counting triangles of sparse graphs. It uses

LOTUS: Locality Optimizing Triangle Counting PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

matrix multiplication for triangles formed by high-degree
vertices and for triangles made by at least one low-degree ver-
tex, AYZ algorithm acts like the node iterator algorithm (Sec-
tion 2.2) and finds the directed paths of length 2 and checks
if their endpoints are connected by an edge.
In addition to the 3 algorithms explained in Section 2.2,

Schank and Wagner [62] present 3 improvements:

• Node-iterator-core algorithm prioritizes verticeswith smaller
degree and removes the vertex after processing,

• Edge-iterator-hashed algorithm uses a hash container to
identify the common neighbours of the endpoints of each
node, and

• Forward-hashed algorithm uses a hash container for find-
ing common neighbours.

Latapy [48] presents the new-vertex-listing algorithm to
improve the node iterator algorithm for high-degree vertices.
For each vertex, it iterates over all its neighbours and finds
the common neighbours using a bitmap. Based on this, Lat-
apy presents the new-listing as an improvement to the AYZ
algorithm.

Lotus makes several benefits from these algorithms:

• Similar to AYZ and new-listing, Lotus differentiates be-
tween hub and non-hub vertices, however, Lotus counts
a triangle as hub triangle if it has at least one hub vertex,
as the main target of Lotus is to prevent accessing hub
edges when it is not required.

• Lotus uses a bitmap array like the new-vertex-listing algo-
rithm does. However, Lotus does not use it for presenting
edges of only a vertex, but for all edges between hubs.

• Lotus has also similarities with node-iterator-core algo-
rithm as Lotus (1) counts triangles of hubs, (2) removes
hubs and their edges from the graph (as they are not
present in the NHE sub-graph), and (3) counts triangles
between non-hub vertices in the NHE sub-graph.

6.2 Approximate and Streaming TC
Approximate and streaming TC has also been studied in the
literature such as [11, 19, 39, 63, 71].
The Lotus algorithm can be used to accelerate counting

hub triangles of a streaming graph and also to improve its
precision. We know hubs create a large percentage of total
triangles (Sections 3.4 and 5.4) and therefore in a streaming
context, Lotus stores the H2H bit array in the memory and
accelerates processing of hub edges that are streamed in.

6.3 Improvements to TC and Forward Algorithm
Using hash maps for accelerating neighbour matching has
been studied in some works such as [48, 63]. In this con-
text, using binary search has been proposed in [31] and [33]
deploys branch-free binary search [40, 41]. [34] decides be-
tween merge-based search and binary search by considering
degree of vertices.

[27] improves TC by removing vertices with degree 1 (that
cannot shape a triangle) from the graph and by ordering
vertices of the same degree based on their connection to hub
vertices. [32] reduces branch misses by using radix binning.
Fast (but with more memory complexity) common neighbour
counting through iterating over all wedges is studied in [3].
TC has been one of the problems pursued by the Graph
Challenge and [60] surveys a number of TC studies.

6.4 Distributed and GPU-based TC
Distributed TC has been considered in studies such as [5, 6,
77], and GPU-based TC in [14, 25, 31, 33, 34, 76]. Patric [5]
presents different types of partitioning for distributed TC and
also a dynamic load balancing mechanism [6]. [76] studies
block-based partitioning in TC. An evaluation of set inter-
section techniques has been studied in [13].

6.5 Locality Optimizing and Structure-Aware
Algorithms

SDS Sort [28] introduces a parallel sorting algorithm for data
with skewed distribution.

Graph relabeling algorithms such as Rabbit-Order [4],
GOrder [74], SlashBurn [50], and CN-Order [51] optimize lo-
cality in SpMV-based graph processing. [44] analyzes the ef-
fects of reordering algorithms on different real-world graphs
by investigating the connection between different vertex
classes of the graphs. It is also explained how the struc-
ture of a power-law graph provides better Push Locality (in
traversing a graph in the push direction), or Pull Locality (for
traversing a graph in the pull direction).

While graph reordering algorithms provide better locality
for non-hub vertices, they cannot improve locality of hub
vertices in a pull traversal as much as other vertices [43].
Hubs have a great number of neighbours and consecutive
processing of these neighbours reduces the opportunity for
reusing loaded vertex data in cache.
iHTL [42] provides temporal locality in processing hub

vertices and increases the Effective Cache Size[44] in SpMV-
based graph processing algorithms by extracting dense sub-
graphs containing incoming edges to in-hubs and processing
them in the push direction; while processing other edges in
the pull direction. In this way, memory accesses for process-
ing in-hubs, that have a few common destinations, are hit in
cache and the destructive effect of processing in-hubs in the
pull direction is prohibited.

Thrifty Label Propagation [45] optimizesmemory accesses
in identifying Connected Components (CC) of power-law
graphs. Thrifty introduces Zero Planting and Zero Conver-
gence techniques to accelerate label propagation and to pre-
vent processing all edges of the graph in pull iterations. In
this way, Thrifty processes only a small percentage of edges
and delivers better performance than sampling CC algo-
rithms like Afforest [69].

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Koohi Esfahani, Kilpatrick, Vandierendonck

To provide better load balance in using CPU and GPU
integrated devices, FinePar [78] assigns high-degree ver-
tices to CPU while processing low-degree vertices by GPU.
VEBO [68] introduces a partitioning algorithm that distributes
high-degree vertices on different partitions, while trying to
assign equal number of edges to partitions.

7 Conclusion and Future Work
This paper studies behaviours of real-world graphs in trian-
gle counting and explains that the large fraction of edges
connected to hubs suffer from low reuse.
We introduced the LOTUS algorithm based on common

features of power-law graphs. Lotus processes hub edges
separately from non-hub edges, which allows Lotus to count
triangles in 3 steps. In each step, Lotus optimizes locality by
concentrating random memory accesses on a data structure
that contains more specific data in a much smaller size.
The evaluation shows that Lotus is 2.2–5.5× faster than

previous works.
We propose the following extensions as future work:

• TC is the simplest form of the k-clique counting problem.
We anticipate that the skewed statistics on triangles con-
taining hubs will become even more skewed for larger
cliques. It would be interesting to study how Lotus can
be applied for counting larger cliques.

• Lotus improves locality in counting HNN triangles by re-
ducing the size of topology data and avoiding interleaving
hub and non-hub edges; however, locality of HNN may
be further improved by applying blocking strategies [36]
to limit domain of random accesses.

• Creating multiple HE sub-graphs may improve perfor-
mance further, especially in graphswithmany high-degree
vertices (Section 5.5). It is an open question whether rec-
ognizing a higher number of distinct vertex types (two
kinds of hubs and non-hubs) creates further opportunities
to prune fruitless searches during HNN and NNN search.

Source Code Availability
Source code repository and further discussions are available
online in https://blogs.qub.ac.uk/GraphProcessing/LOTUS-
Locality-Optimizing-Triangle-Counting/ .

Acknowledgments
We are grateful to Prof. Paolo Boldi for giving guidance in
using WebGraph framework.

We are grateful to Dr. Vaughan Purnell (QUB), Jose Sanchez
Bornot (Ulster University), Luis Fernandez Menchero (QUB),
and James McGroarty (QUB) for supervising the Kelvin High
Performance Computing Centre.

This work is partially supported by the High Performance
Computing center of Queen’s University Belfast and the
Kelvin supercomputer (EPSRC grant EP/T022175/1) and by

DiPET (CHIST-ERA project CHIST-ERA-18-SDCDN-002, EP-
SRC grant EP/T022345/1).

First author is supported by a scholarship of the Queen’s
University Belfast and the Department for the Economy,
Northern Ireland.

We are grateful for the constructive feedback and sugges-
tions of our PPoPP’22 reviewers.

References
[1] Noga Alon, Raphael Yuster, and Uri Zwick. 1994. Finding and Counting

Given Length Cycles (Extended Abstract). In Proceedings of the Second
Annual European Symposium on Algorithms (ESA ’94). Springer-Verlag,
Berlin, Heidelberg, 354–364.

[2] Noga Alon, Raphael Yuster, and Uri Zwick. 1997. Finding and counting
given length cycles. Algorithmica 17 (1997), 209–223. https://doi.org/
10.1007/BF02523189

[3] Xiaojing An, Kasimir Gabert, James Fox, Oded Green, and David A.
Bader. 2019. Skip the Intersection: Quickly Counting Common Neigh-
bors on Shared-Memory Systems. In 2019 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, USA, 1–7. https:
//doi.org/10.1109/HPEC.2019.8916307

[4] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka,
and Sotetsu Iwamura. 2016. Rabbit Order: Just-in-Time Parallel Re-
ordering for Fast Graph Analysis. In 2016 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS). IEEE, USA, 22–31.
https://doi.org/10.1109/IPDPS.2016.110

[5] Shaikh Arifuzzaman,Maleq Khan, andMadhavMarathe. 2013. PATRIC:
A Parallel Algorithm for Counting Triangles in Massive Networks.
In Proceedings of the 22nd ACM International Conference on Informa-
tion and Knowledge Management (San Francisco, California, USA)
(CIKM ’13). Association for Computing Machinery, New York, NY,
USA, 529–538. https://doi.org/10.1145/2505515.2505545

[6] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. 2015. A fast
parallel algorithm for counting triangles in graphs using dynamic load
balancing. In 2015 IEEE International Conference on Big Data (Big Data).
IEEE, USA, 1839–1847. https://doi.org/10.1109/BigData.2015.7363957

[7] Ariful Azad, Mohsen Mahmoudi Aznaveh, Scott Beamer, Mark Blanco,
Jinhao Chen, Luke D’Alessandro, Roshan Dathathri, Tim Davis, Kevin
Deweese, Jesun Firoz, Henry A Gabb, Gurbinder Gill, Balint Hegyi,
Scott Kolodziej, Tze Meng Low, Andrew Lumsdaine, Tugsbayasgalan
Manlaibaatar, Timothy G Mattson, Scott McMillan, Ramesh Peri, Ke-
shav Pingali, Upasana Sridhar, Gabor Szarnyas, Yunming Zhang, and
Yongzhe Zhang. 2020. Evaluation of Graph Analytics Frameworks
Using the GAP Benchmark Suite. In 2020 IEEE International Sym-
posium on Workload Characterization (IISWC). IEEE, USA, 216–227.
https://doi.org/10.1109/IISWC50251.2020.00029

[8] Ariful Azad, Aydin Buluç, and John Gilbert. 2015. Parallel Triangle
Counting and Enumeration Using Matrix Algebra. In 2015 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshop.
IEEE, USA, 804–811. https://doi.org/10.1109/IPDPSW.2015.75

[9] Ariful Azad, Georgios A. Pavlopoulos, Christos A. Ouzounis, Nikos C.
Kyrpides, and Aydin Buluc. 2018. HipMCL: a high-performance parallel
implementation of the Markov clustering algorithm for large-scale
networks. Nucleic Acids Research 46, 6 (1 2018), 11. https://doi.org/10.
1093/nar/gkx1313

[10] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP
Benchmark Suite. CoRR abs/1508.03619 (2015), 1–16. arXiv:1508.03619
http://arxiv.org/abs/1508.03619

[11] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2008.
Efficient Semi-Streaming Algorithms for Local Triangle Counting in
Massive Graphs. In Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (Las Vegas,

https://blogs.qub.ac.uk/GraphProcessing/LOTUS-Locality-Optimizing-Triangle-Counting/
https://blogs.qub.ac.uk/GraphProcessing/LOTUS-Locality-Optimizing-Triangle-Counting/
https://doi.org/10.1007/BF02523189
https://doi.org/10.1007/BF02523189
https://doi.org/10.1109/HPEC.2019.8916307
https://doi.org/10.1109/HPEC.2019.8916307
https://doi.org/10.1109/IPDPS.2016.110
https://doi.org/10.1145/2505515.2505545
https://doi.org/10.1109/BigData.2015.7363957
https://doi.org/10.1109/IISWC50251.2020.00029
https://doi.org/10.1109/IPDPSW.2015.75
https://doi.org/10.1093/nar/gkx1313
https://doi.org/10.1093/nar/gkx1313
https://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619

LOTUS: Locality Optimizing Triangle Counting PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Nevada, USA) (KDD ’08). Association for Computing Machinery, New
York, NY, USA, 16–24. https://doi.org/10.1145/1401890.1401898

[12] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2010.
Efficient Algorithms for Large-Scale Local Triangle Counting. ACM
Trans. Knowl. Discov. Data 4, 3, Article 13 (Oct. 2010), 28 pages. https:
//doi.org/10.1145/1839490.1839494

[13] Christos Bellas and Anastasios Gounaris. 2022. Exploiting GPUs for
fast intersection of large sets. Information Systems (2022), 101992.
https://doi.org/10.1016/j.is.2022.101992

[14] Mauro Bisson and Massimiliano Fatica. 2017. Static graph challenge
on GPU. In 2017 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, USA, 1–8. https://doi.org/10.1109/HPEC.2017.8091034

[15] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna.
2004. UbiCrawler: A Scalable Fully Distributed Web Crawler. Softw.
Pract. Exper. 34, 8 (July 2004), 711–726. https://doi.org/10.1002/spe.587

[16] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna.
2018. BUbiNG: Massive Crawling for the Masses. ACM Trans. Web 12,
2, Article 12 (June 2018), 26 pages. https://doi.org/10.1145/3160017

[17] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011.
Layered Label Propagation: A Multiresolution Coordinate-Free Order-
ing for Compressing Social Networks. In Proceedings of the 20th Inter-
national Conference onWorldWideWeb (Hyderabad, India) (WWW ’11).
Association for Computing Machinery, New York, NY, USA, 587–596.
https://doi.org/10.1145/1963405.1963488

[18] P. Boldi and S. Vigna. 2004. The Webgraph Framework I: Com-
pression Techniques. In Proceedings of the 13th International Con-
ference on World Wide Web (New York, NY, USA) (WWW ’04). As-
sociation for Computing Machinery, New York, NY, USA, 595–602.
https://doi.org/10.1145/988672.988752

[19] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto
Marchetti-Spaccamela, and Christian Sohler. 2006. Counting Tri-
angles in Data Streams. In Proceedings of the Twenty-Fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(Chicago, IL, USA) (PODS ’06). Association for Computing Machinery,
New York, NY, USA, 253–262. https://doi.org/10.1145/1142351.1142388

[20] Ronald S Burt. 2004. Structural holes and good ideas. American journal
of sociology 110, 2 (2004), 349–399.

[21] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P.
Gummadi. 2010. Measuring User Influence in Twitter: The Million
Follower Fallacy, In ICWSM. AAAI Conference on Weblogs and Social
Media 14.

[22] Charles L Clarke, Nick Craswell, and Ian Soboroff. 2009. Overview of
the trec 2009 web track. Technical Report. DTIC Document.

[23] Jonathan Cohen. 2009. Graph Twiddling in a MapReduce World. Com-
puting in Science & Engineering 11 (2009), 29–42.

[24] James S. Coleman. 1988. Social Capital in the Creation of Human
Capital. Amer. J. Sociology 94 (1988), S95–S120.

[25] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam.
2018. Multi-threaded Sparse Matrix-Matrix Multiplication for Many-
Core and GPU Architectures. CoRR abs/1801.03065 (2018), 24.
arXiv:1801.03065 http://arxiv.org/abs/1801.03065

[26] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoret-
ically Efficient Parallel Graph Algorithms Can Be Fast and Scalable.
ACM Trans. Parallel Comput. 8, 1, Article 4 (April 2021), 70 pages.
https://doi.org/10.1145/3434393

[27] Evan Donato, Ming Ouyang, and Cristian Peguero-Isalguez. 2018.
Triangle Counting with A Multi-Core Computer. In 2018 IEEE High
Performance extreme Computing Conference (HPEC). IEEE, USA, 1–7.
https://doi.org/10.1109/HPEC.2018.8547540

[28] Bin Dong, Surendra Byna, and Kesheng Wu. 2016. SDS-Sort: Scalable
Dynamic Skew-Aware Parallel Sorting. In Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and Distributed
Computing (Kyoto, Japan) (HPDC ’16). Association for Computing Ma-
chinery, New York, NY, USA, 57–68. https://doi.org/10.1145/2907294.

2907300
[29] Jean-Pierre Eckmann and Elisha Moses. 2002. Curvature of co-links

uncovers hidden thematic layers in the World Wide Web. Proceedings
of the National Academy of Sciences of the United States of America 99
(2002), 5825–5829.

[30] Brooke Foucault Welles, Anne Van Devender, and Noshir Contractor.
2010. Is a Friend a Friend? Investigating the Structure of Friendship Net-
works in Virtual Worlds. Association for Computing Machinery, New
York, NY, USA, 4027–4032. https://doi.org/10.1145/1753846.1754097

[31] James Fox, Oded Green, Kasimir Gabert, Xiaojing An, and David A.
Bader. 2018. Fast and Adaptive List Intersections on the GPU. In 2018
IEEE High Performance extreme Computing Conference (HPEC). IEEE,
USA, 1–7. https://doi.org/10.1109/HPEC.2018.8547759

[32] Oded Green, James Fox, Alex Watkins, Alok Tripathy, Kasimir Gabert,
Euna Kim, Xiaojing An, Kumar Aatish, and David A. Bader. 2018.
Logarithmic Radix Binning and Vectorized Triangle Counting. In 2018
IEEE High Performance extreme Computing Conference (HPEC). IEEE,
USA, 1–7. https://doi.org/10.1109/HPEC.2018.8547581

[33] Chuangyi Gui, Long Zheng, Pengcheng Yao, Xiaofei Liao, and Hai Jin.
2019. Fast Triangle Counting on GPU. In 2019 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, USA, 1–7. https://doi.
org/10.1109/HPEC.2019.8916216

[34] Yang Hu, Hang Liu, and H. Howie Huang. 2018. TriCore: Parallel
Triangle Counting on GPUs. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, USA,
171–182. https://doi.org/10.1109/SC.2018.00017

[35] David A. Huffman. 1952. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.
https://doi.org/10.1109/JRPROC.1952.273898

[36] Eun-Jin Im and Katherine A Yelick. 1999. Optimizing Sparse Matrix
Vector Multiplication on SMP. In Proceedings of the Ninth SIAM Confer-
ence on Parallel Processing for Scientific Computing, PPSC 1999. Citeseer,
SIAM, USA, 9.

[37] Alon Itai and Michael Rodeh. 1977. Finding a Minimum Circuit in a
Graph. In Proceedings of the Ninth Annual ACM Symposium on Theory
of Computing (Boulder, Colorado, USA) (STOC ’77). Association for
Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.
1145/800105.803390

[38] Alon Itai and Michael Rodeh. 1978. Finding a minimum circuit in a
graph. SIAM J. Comput. 7, 4 (1978), 413–423.

[39] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. A Space-Efficient
Streaming Algorithm for Estimating Transitivity and Triangle Counts
Using the Birthday Paradox. ACM Trans. Knowl. Discov. Data 9, 3,
Article 15 (Feb. 2015), 21 pages. https://doi.org/10.1145/2700395

[40] Paul-Virak Khuong and Pat Morin. 2017. Array Layouts for
Comparison-Based Searching. ACM J. Exp. Algorithmics 22, Article
1.3 (May 2017), 39 pages.

[41] Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3:
(2nd Ed.) Sorting and Searching. Addison Wesley Longman Publishing
Co., Inc., USA.

[42] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck.
2021. Exploiting In-Hub Temporal Locality In SpMV-Based Graph Pro-
cessing. In 50th International Conference on Parallel Processing (Lemont,
IL, USA) (ICPP 2021). Association for Computing Machinery, New York,
NY, USA, 10. https://doi.org/10.1145/3472456.3472462

[43] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck.
2021. How Do Graph Relabeling Algorithms Improve Memory Local-
ity?. In 2021 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE Computer Society, USA, 84–86.
https://doi.org/10.1109/ISPASS51385.2021.00023

[44] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck.
2021. Locality Analysis of Graph Reordering Algorithms. In 2021 IEEE
International Symposium on Workload Characterization (IISWC’21).
IEEE Computer Society, USA, 101–112. https://doi.org/10.1109/

https://doi.org/10.1145/1401890.1401898
https://doi.org/10.1145/1839490.1839494
https://doi.org/10.1145/1839490.1839494
https://doi.org/10.1016/j.is.2022.101992
https://doi.org/10.1109/HPEC.2017.8091034
https://doi.org/10.1002/spe.587
https://doi.org/10.1145/3160017
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/1142351.1142388
https://arxiv.org/abs/1801.03065
http://arxiv.org/abs/1801.03065
https://doi.org/10.1145/3434393
https://doi.org/10.1109/HPEC.2018.8547540
https://doi.org/10.1145/2907294.2907300
https://doi.org/10.1145/2907294.2907300
https://doi.org/10.1145/1753846.1754097
https://doi.org/10.1109/HPEC.2018.8547759
https://doi.org/10.1109/HPEC.2018.8547581
https://doi.org/10.1109/HPEC.2019.8916216
https://doi.org/10.1109/HPEC.2019.8916216
https://doi.org/10.1109/SC.2018.00017
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1145/800105.803390
https://doi.org/10.1145/800105.803390
https://doi.org/10.1145/2700395
https://doi.org/10.1145/3472456.3472462
https://doi.org/10.1109/ISPASS51385.2021.00023
https://doi.org/10.1109/IISWC53511.2021.00020
https://doi.org/10.1109/IISWC53511.2021.00020

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Koohi Esfahani, Kilpatrick, Vandierendonck

IISWC53511.2021.00020
[45] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck.

2021. Thrifty Label Propagation: Fast Connected Components for
Skewed-Degree Graphs. In 2021 IEEE International Conference on Clus-
ter Computing (CLUSTER). IEEE Computer Society, USA, 226–237.
https://doi.org/10.1109/Cluster48925.2021.00042

[46] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection.
In Proceedings of the 22nd International Conference on World Wide
Web (Rio de Janeiro, Brazil) (WWW ’13 Companion). Association for
Computing Machinery, New York, NY, USA, 1343–1350. https://doi.
org/10.1145/2487788.2488173

[47] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a Social Network or a News Media?. In Proceedings of
the 19th International Conference on World Wide Web (Raleigh, North
Carolina, USA) (WWW ’10). Association for Computing Machinery,
New York, NY, USA, 591–600. https://doi.org/10.1145/1772690.1772751

[48] Matthieu Latapy. 2008. Main-memory triangle computations for very
large (sparse (power-law)) graphs. Theoretical Computer Science 407, 1
(2008), 458–473.

[49] Oliver Lehmberg, Robert Meusel, and Christian Bizer. 2014. Graph
Structure in the Web: Aggregated by Pay-Level Domain. In Proceedings
of the 2014 ACM Conference on Web Science (Bloomington, Indiana,
USA) (WebSci ’14). Association for Computing Machinery, New York,
NY, USA, 119–128. https://doi.org/10.1145/2615569.2615674

[50] Yongsub Lim, U Kang, and Christos Faloutsos. 2014. SlashBurn: Graph
Compression and Mining beyond Caveman Communities. IEEE Trans-
actions on Knowledge and Data Engineering 26, 12 (Dec 2014), 3077–
3089. https://doi.org/10.1109/TKDE.2014.2320716

[51] Thomas Messi Nguélé, Maurice Tchuente, and Jean-François Méhaut.
2017. Using Complex-Network properties For Efficient Graph Analysis.
In International Conference on Parallel Computing, ParCo 2017 (Parallel
Computing is Everywhere), Vol. 32. Foundation ParCo Conferences
and Consortium Cineca, IOS Press Ebooks, Bologne, Italy, 413–422.
https://doi.org/10.3233/978-1-61499-843-3-413

[52] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian
Bizer. 2014. Graph Structure in the Web — Revisited: A Trick of
the Heavy Tail. In Proceedings of the 23rd International Conference on
World Wide Web (Seoul, Korea) (WWW ’14 Companion). Association
for Computing Machinery, New York, NY, USA, 427–432. https://doi.
org/10.1145/2567948.2576928

[53] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian
Bizer. 2015. The Graph Structure in the Web – Analyzed on Different
Aggregation Levels. The Journal of Web Science 1, 1 (2015), 33–47.
https://doi.org/10.1561/106.00000003

[54] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, and Uri Alon. 2002. Network motifs: simple building
blocks of complex networks. Science 298, 5594 (2002), 824–827.

[55] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. 2007. Measurement and Analysis
of Online Social Networks. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement (San Diego, California, USA) (IMC
’07). ACM, New York, NY, USA, 29–42.

[56] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Light-
weight Infrastructure for Graph Analytics. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New
York, NY, USA, 456–471. https://doi.org/10.1145/2517349.2522739

[57] Alejandro Portes. 1998. Social capital: Its origins and applications in
modern sociology. Annual review of sociology 24, 1 (1998), 1–24.

[58] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-
tory with Interactive Graph Analytics and Visualization. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence (Austin,
Texas) (AAAI’15). AAAI Press, USA, 4292–4293.

[59] Youcef Saad. 1994. Sparskit: a basic tool kit for sparse matrix compu-
tations - Version 2.

[60] Siddharth Samsi, Jeremy Kepner, Vijay Gadepally, Michael Hurley,
Michael Jones, Edward Kao, Sanjeev Mohindra, Albert Reuther, Steven
Smith, William Song, Diane Staheli, and Paul Monticciolo. 2020.
GraphChallenge.org Triangle Counting Performance. In 2020 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, USA,
1–9. https://doi.org/10.1109/HPEC43674.2020.9286166

[61] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary,
Jiwon Seo, Jongsoo Park, M. Amber Hassaan, Shubho Sengupta,
Zhaoming Yin, and Pradeep Dubey. 2014. Navigating the Maze
of Graph Analytics Frameworks Using Massive Graph Datasets. In
Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Asso-
ciation for Computing Machinery, New York, NY, USA, 979–990.
https://doi.org/10.1145/2588555.2610518

[62] Thomas Schank and Dorothea Wagner. 2005. Finding, Counting and
Listing All Triangles in Large Graphs, an Experimental Study. In Exper-
imental and Efficient Algorithms, Sotiris E. Nikoletseas (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 606–609.

[63] Julian Shun and Kanat Tangwongsan. 2015. Multicore triangle compu-
tations without tuning. In 2015 IEEE 31st International Conference on
Data Engineering. IEEE, USA, 149–160. https://doi.org/10.1109/ICDE.
2015.7113280

[64] Friendster social network. 2011. Friendster: The online gaming social
network. archive.org/details/friendster-dataset-201107.

[65] Martin Steinegger and Johannes Söding. 2018. Clustering huge protein
sequence sets in linear time. Nature Communications 9 (06 2018).
https://doi.org/10.1038/s41467-018-04964-5

[66] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos.
2017. Accelerating Graph Analytics by Utilising the Memory Locality
of Graph Partitioning. In 2017 46th International Conference on Parallel
Processing (ICPP). ACM, USA, 181–190. https://doi.org/10.1109/ICPP.
2017.27

[67] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos.
2017. GraphGrind: Addressing Load Imbalance of Graph Partition-
ing. In Proceedings of the International Conference on Supercomputing
(Chicago, Illinois) (ICS ’17). Association for Computing Machinery,
New York, NY, USA, Article 16, 10 pages. https://doi.org/10.1145/
3079079.3079097

[68] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos.
2018. VEBO: A Vertex- and Edge-Balanced Ordering Heuristic to Load
Balance Parallel Graph Processing. CoRR abs/1806.06576 (2018), 1–13.
arXiv:1806.06576 http://arxiv.org/abs/1806.06576

[69] Michael Sutton, Tal Ben-Nun, and Amnon Barak. 2018. Optimizing
parallel graph connectivity computation via subgraph sampling. In
2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 12–21. https://doi.org/10.1109/IPDPS.2018.00012

[70] Daniel Terpstra, Heike Jagode, Haihang You, and Jack J. Dongarra.
2009. Collecting Performance Data with PAPI-C. In Tools for High
Performance Computing 2009 - Proceedings of the 3rd International
Workshop on Parallel Tools for High Performance Computing, September
2009, ZIH, Dresden, Matthias S. Müller, Michael M. Resch, Alexander
Schulz, and Wolfgang E. Nagel (Eds.). Springer, 157–173. https://doi.
org/10.1007/978-3-642-11261-4_11

[71] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller, and Christos
Faloutsos. 2009. DOULION: Counting Triangles in Massive Graphs
with a Coin. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Paris, France)
(KDD ’09). Association for Computing Machinery, New York, NY, USA,
837–846. https://doi.org/10.1145/1557019.1557111

[72] Hans Vandierendonck. 2020. Graptor: Efficient Pull and Push Style
Vectorized Graph Processing. In Proceedings of the 34th ACM Inter-
national Conference on Supercomputing (Barcelona, Spain) (ICS ’20).

https://doi.org/10.1109/IISWC53511.2021.00020
https://doi.org/10.1109/Cluster48925.2021.00042
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/2615569.2615674
https://doi.org/10.1109/TKDE.2014.2320716
https://doi.org/10.3233/978-1-61499-843-3-413
https://doi.org/10.1145/2567948.2576928
https://doi.org/10.1145/2567948.2576928
https://doi.org/10.1561/106.00000003
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1109/HPEC43674.2020.9286166
https://doi.org/10.1145/2588555.2610518
https://doi.org/10.1109/ICDE.2015.7113280
https://doi.org/10.1109/ICDE.2015.7113280
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1109/ICPP.2017.27
https://doi.org/10.1109/ICPP.2017.27
https://doi.org/10.1145/3079079.3079097
https://doi.org/10.1145/3079079.3079097
https://arxiv.org/abs/1806.06576
http://arxiv.org/abs/1806.06576
https://doi.org/10.1109/IPDPS.2018.00012
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1145/1557019.1557111

LOTUS: Locality Optimizing Triangle Counting PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

ACM, New York, NY, USA, Article 13, 13 pages. https://doi.org/10.
1145/3392717.3392753

[73] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of
‘small-world’ networks. nature 393, 6684 (1998), 440–442.

[74] HaoWei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup Graph
Processing by Graph Ordering. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA)
(SIGMOD ’16). Association for Computing Machinery, New York, NY,
USA, 1813–1828. https://doi.org/10.1145/2882903.2915220

[75] Howard T Welser, Eric Gleave, Danyel Fisher, and Marc Smith. 2007.
Visualizing the signatures of social roles in online discussion groups.
Journal of social structure 8, 2 (2007), 1–32.

[76] Abdurrahman Yasar, Sivasankaran Rajamanickam, Jonathan W. Berry,
and Ümit V. Çatalyürek. 2020. A Block-Based Triangle Counting
Algorithm on Heterogeneous Environments. CoRR abs/2009.12457

(2020), 1–13. arXiv:2009.12457 https://arxiv.org/abs/2009.12457
[77] Abdurrahman Yaşar, Sivasankaran Rajamanickam, Michael Wolf,

Jonathan Berry, and Ümit V. Çatalyürek. 2018. Fast Triangle Counting
Using Cilk. In 2018 IEEE High Performance extreme Computing Con-
ference (HPEC). IEEE, USA, 1–7. https://doi.org/10.1109/HPEC.2018.
8547563

[78] Feng Zhang, Bo Wu, Jidong Zhai, Bingsheng He, and Wenguang Chen.
2017. FinePar: Irregularity-aware fine-grained workload partitioning
on integrated architectures. In 2017 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). 27–38. https://doi.org/
10.1109/CGO.2017.7863726

[79] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-Aware
Graph-Structured Analytics. SIGPLAN Not. 50, 8 (Jan. 2015), 183–193.
https://doi.org/10.1145/2858788.2688507

https://doi.org/10.1145/3392717.3392753
https://doi.org/10.1145/3392717.3392753
https://doi.org/10.1145/2882903.2915220
https://arxiv.org/abs/2009.12457
https://arxiv.org/abs/2009.12457
https://doi.org/10.1109/HPEC.2018.8547563
https://doi.org/10.1109/HPEC.2018.8547563
https://doi.org/10.1109/CGO.2017.7863726
https://doi.org/10.1109/CGO.2017.7863726
https://doi.org/10.1145/2858788.2688507

	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 TC Algorithms

	3 Motivation
	3.1 Low Locality in Processing Non-Hub Vertices
	3.2 Lack of Compactness of Graph Topology
	3.3 Fruitless Searches
	3.4 Highly Dense Hubs Sub-graph

	4 LOTUS
	4.1 Lotus Idea
	4.2 Lotus Graph Structure
	4.3 Lotus Preprocessing
	4.4 Counting Triangles in Lotus
	4.5 How Does Lotus Improve Locality?
	4.6 Graph Partitioning and Load Balancing in Lotus

	5 Evaluation
	5.1 Experimental Setup
	5.2 Comparison to Previous Works
	5.3 Has Lotus Improved Locality?
	5.4 Execution Breakdown
	5.5 Less Power-Law Graphs
	5.6 Topology Data Size
	5.7 H2H Bit Array
	5.8 Squared Edge Tiling

	6 Related Work
	6.1 TC History
	6.2 Approximate and Streaming TC
	6.3 Improvements to TC and Forward Algorithm
	6.4 Distributed and GPU-based TC
	6.5 Locality Optimizing and Structure-Aware Algorithms

	7 Conclusion and Future Work
	Acknowledgments
	References

